A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Analysis of Structure-Activity Relationships Based on the Hepatitis C Virus SLIIb Internal Ribosomal Entry Sequence RNA-Targeting GGHYRFK⋅Cu Complex. | LitMetric

Analysis of Structure-Activity Relationships Based on the Hepatitis C Virus SLIIb Internal Ribosomal Entry Sequence RNA-Targeting GGHYRFK⋅Cu Complex.

Chembiochem

Evans Laboratory of Chemistry, Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA.

Published: September 2017

New therapeutics for targeting the hepatitis C virus (HCV) have been released in recent years. Although they are less prone to resistance, they are still administered in cocktails as a combination of drugs targeting various aspects of the viral life cycle. Herein, we aim to contribute to an arsenal of new HCV therapeutics by targeting the HCV internal ribosomal entry sequence (IRES) RNA through the development of catalytic metallodrugs that function to degrade rather than inhibit the target molecule. Based on a previously characterized HCV IRES stem-loop IIb RNA-targeting metallopeptide Cu-GGHYrFK (1⋅Cu), an all-l analogue (3⋅Cu) and a series of additional complexes with single alanine substitutions in the targeting domain were prepared and screened to determine the influence each amino acid side chain on RNA localization and recognition, and catalytic reactivity toward the RNA. Additional substitutions of the tyrosine position in complex 3⋅Cu were also investigated. Good agreement between calculated and measured binding affinities provided support for in silico modeling of the SLIIb RNA binding site and correlations with RNA cleavage sites. Examination of the cleavage products from reaction of the Cu complexes with SLIIb provided mechanistic insights, with the first observation of the 5'-geminal diol and 5'-phosphopropenal as products through the use of a Cu⋅ATCUN catalytic motif. Together, the data yielded insights into structure-function relationships that will guide future optimization efforts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5970367PMC
http://dx.doi.org/10.1002/cbic.201700228DOI Listing

Publication Analysis

Top Keywords

hepatitis c virus
8
internal ribosomal
8
ribosomal entry
8
entry sequence
8
therapeutics targeting
8
rna
5
analysis structure-activity
4
structure-activity relationships
4
relationships based
4
based hepatitis c
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!