This study sought to evaluate how dissolved organic carbon (DOC) affects attenuation of trace organic contaminants (TOrCs) in biochar-amended stormwater biofilters. It was hypothesized that (1) DOC-augmented runoff would demonstrate enhanced TOrC biodegradation and (2) biochar-amended sand bearing DOC-cultivated biofilms would achieve enhanced TOrC attenuation due to sorptive retention and biodegradation. Microcosm and column experiments were conducted utilizing actual runoff, DOC from straw and compost, and a suite of TOrCs. Biodegradation of TOrCs in runoff was more enhanced by compost DOC than straw DOC (particularly for atrazine, prometon, benzotriazole, and fipronil). 16S rRNA gene quantification and sequencing revealed that growth-induced microbial community changes were, among replicates, most consistent for compost-augmented microcosms and least consistent for raw runoff microcosms. Compost DOC most robustly enhanced utilization of TOrCs as carbon substrates, possibly due to higher residual nutrient levels upon TOrC exposure. Sand columns containing just 0.5 wt % biochar maintained sorptive TOrC retention in the presence of compost-DOC-cultivated biofilms, and TOrC removal was further enhanced by biological activity. Overall, these results suggest that coamendment with biochar and compost may robustly enhance TOrC attenuation in stormwater biofilters, a finding of significance for efforts to mitigate the impacts of runoff on water quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.7b01164 | DOI Listing |
Water Res
December 2024
Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales (UNSW), High St, Kensington, NSW, 2052, Australia; Institute for Artificial Intelligence Research and Development of Serbia, 21000 Novi Sad, Serbia.
Vegetated biofiltration system (VBS) is an effective green technology for urban stormwater and greywater treatment. However, VBS is yet to be optimised for effective treatment of wastewater, particularly if it contains trace organic chemicals (TrOCs). The effect of plant species has not been addressed under TrOC wastewater loading.
View Article and Find Full Text PDFData Brief
December 2024
Czech Technical University in Prague, Faculty of Civil Engineering, Prague 166 29, Czech Republic.
The dataset represents micro computed tomography (µCT) images of undisturbed samples of constructed Technosol, obtained by sampling from the top layer of the biofilter in two bioretention cells. A bioretention cell is a stormwater management system designed to collect and temporarily retain stormwater runoff and treat it by filtering it through a soil media called a biofilter. Soil samples were collected at 7, 12, 18, 23, and 31 months after the establishment of bioretention cells.
View Article and Find Full Text PDFJ Hazard Mater
November 2024
University of Delaware, Newark, DE 19716, USA.
Munition constituents (MC) in stormwater runoff have the potential to move these pollutants into receiving bodies at military installations. Here we present further evaluation of a passive and sustainable biofilter technology for removal of dissolved MC from simulated surface runoff by combined sorption-biodegradation processes under dynamic flow conditions. Columns were packed with MC sorbents Sphagnum peat moss and cationized (CAT) pine shavings with and without wood-based biochar.
View Article and Find Full Text PDFWater Res
November 2024
Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
Biofilters are among the most popular nature-based systems for treating stormwater and delivering multiple environmental benefits. However, as a passive system, their performance tends to be inconsistent in removing emerging organic contaminants produced by anthropogenic activities that can be persistent, mobile, and toxic. Thus, in this study, real time control (RTC) of stormwater biofilters is introduced to enhance the removal of a diverse range of organic chemicals.
View Article and Find Full Text PDFWater Res
November 2024
Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China. Electronic address:
Dual electron donor bioretention systems have emerged as a popular strategy to enhance dissolved nitrogen removal from stormwater runoff. Pyrite-woodchip mixotrophic bioretention systems showed a promoted and stabilized removal of dissolved nutrients under complex rainfall conditions, but the sulfate reduction process that can induce iron sulfide generation and reuse was overlooked. In this study, experiments and models were applied to investigate the effects of filler configuration and dissolved organic carbon (DOC) dissolution rate on treatment performance and iron sulfide generation in pyrite-woodchip bioretention systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!