Rational engineering and simplified fabrication of high-energy micro-supercapacitors (MSCs) using graphene and other 2D nanosheets are of great value for flexible and integrated electronics. Here we develop one-step mask-assisted simplified fabrication of high-energy MSCs (PG-MSCs) based on the interdigital hybrid electrode (PG) patterns of stacking high-quality phosphorene nanosheets and electrochemically exfoliated graphene in ionic liquid electrolyte. The hybrid PG films with interdigital patterns were directly manufactured by layer-by-layer deposition of phosphorene and graphene nanosheets with the assistance of a customized interdigital mask, and directly transferred onto a flexible substrate. The resultant patterned PG films present outstanding uniformity, flexibility, conductivity (319 S cm), and structural integration, which can directly serve as binder- and additive-free flexible electrodes for MSCs. Remarkably, PG-MSCs deliver remarkable energy density of 11.6 mWh cm, outperforming most nanocarbon-based MSCs. Moreover, our PG-MSCs show outstanding flexibility and stable performance with slight capacitance fluctuation even under highly folded states. In addition, our simplified mask-assisted strategy for PG-MSCs is highly flexible for simplified production of parallelly and serially interconnected modular power sources, without need of conventional metal-based interconnects and contacts, for designable integrated circuits with high output current and voltage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.7b03288 | DOI Listing |
Materials (Basel)
November 2024
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
RSC Adv
October 2024
Central Labs, King Khalid University, AlQura'a P. O. Box 960 Abha Saudi Arabia.
The pursuit of efficient and sustainable energy storage solutions has fueled significant interest in the development of advanced materials for supercapacitors. Among these, two-dimensional (2D) materials undoubtingly have emerged as promising candidates due to their unique structural and electrochemical properties. To address the inherent challenges such as restacking, limited ion-accessibility, limited scalability, stability under operational conditions, and the intricate balance between surface area and conductivity that hinder the practical application of 2D materials, this article delves into innovative approaches and emerging strategies and prospects that aim to enhance their performance and durability.
View Article and Find Full Text PDFJ Phys Condens Matter
October 2024
Unidad Académica de Ciencia y Tecnología de la Luz y la Materia, Universidad Autónoma de Zacatecas, Circuito Marie Curie S/N, Parque de Ciencia y Tecnología QUANTUM Ciudad del Conocimiento, 98160 Zacatecas, Zacatecas, Mexico.
Fano resonances appear in plenty of physical phenomena due to the interference phenomena of a continuum spectrum and discrete states. In gated bilayer graphene junctions, the chiral matching at oblique incidence between the spectrum of electron states outside the electrostatic barrier and hole bound states inside it gives rise to an asymmetric line shape in the transmission as a function of the energy or Fano resonance. Here, we show that Fano resonances are also possible in gated phosphorene junctions along the zigzag direction.
View Article and Find Full Text PDFSci Rep
September 2024
Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
Borophene, a novel two-dimensional material unveiled in 1998, has garnered significant interest among researchers due to its distinct mechanical and electrical characteristics. Efforts to experimentally synthesize borophene continue to captivate researchers' interest in recent years. Given the current lack of experimental studies on the interaction between water and the borophene surface, molecular dynamics simulation offers a valuable approach for predicting the substance's reactivity with water.
View Article and Find Full Text PDFNanotechnology
September 2024
Faculty of Chemistry, National and Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun 130024, People's Republic of China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!