In Caenorhabditis elegans hermaphrodites, physiological germline apoptosis is higher in cdc-25.3 mutants than in wild-type. The elevated germline apoptosis in cdc-25.3 mutants seems to be induced by accumulation of double-stranded DNA breaks (DSBs). Both DNA damage and synapsis checkpoint genes are required to increase the germline apoptosis. Notably, the number of germ cells that lose P-granule components, PGL-1 and PGL-3, increase in cdc-25.3 mutants, and the increase in germline apoptosis requires the activity of SIR-2.1, a Sirtuin orthologue. These results suggest that elevation of germline apoptosis in cdc-25.3 mutants is induced by accumulation of DSBs, leading to a loss of PGL-1 and PGL-3 in germ cells, which promotes cytoplasmic translocation of SIR-2.1, and finally activates the core apoptotic machinery.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1873-3468.12717DOI Listing

Publication Analysis

Top Keywords

germline apoptosis
24
cdc-253 mutants
16
physiological germline
8
apoptosis cdc-253
8
mutants induced
8
induced accumulation
8
increase germline
8
germ cells
8
pgl-1 pgl-3
8
germline
6

Similar Publications

The death and clearance of nurse cells is a consequential milestone in Drosophila melanogaster oogenesis. In preparation for oviposition, the germline-derived nurse cells bequeath to the developing oocyte all their cytoplasmic contents and undergo programmed cell death. The death of the nurse cells is controlled non-autonomously and is precipitated by epithelial follicle cells of somatic origin acquiring a squamous morphology and acidifying the nurse cells externally.

View Article and Find Full Text PDF

Background: There is increasing interest in enhancing the response of the PARP inhibitor olaparib, which is currently approved for pancreatic ductal adenocarcinoma (PDAC) patients with defects in DNA damage repair associated with germline BRCA1/2 mutations. Moreover, agents that can mimic these defects in the absence of germline BRCA1/2 mutations are an area of active research in hopes of increasing the number of patients eligible for treatment with PARP inhibitors. The extent to which regorafenib, an FDA-approved tyrosine kinase inhibitor, can be used to enhance the efficacy of PARP inhibitors in PDAC cells without known BRCA1/2 mutations remains to be investigated.

View Article and Find Full Text PDF

Cardiocutaneous syndrome is caused by aggregation of iASPP mutants.

Cell Death Discov

December 2024

Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.

The ASPP (apoptosis-stimulating protein of p53) family of proteins is involved in many cellular interactions and is starting to emerge as a major scaffolding hub for numerous proteins involved in cancer biology, inflammation and cellular integrity. It consists of the three members ASPP1, ASPP2 and iASPP which are best known for modulating the apoptotic function of p53, thereby directing cell fate decision. Germline mutations in iASPP have been shown to cause cardiocutaneous syndromes, a combination of heart and skin defects usually leading to death before the age of five.

View Article and Find Full Text PDF

Proteomic dataset of knockdown of AKT3 on protein expression and function in female germline stem cells.

Data Brief

December 2024

Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.

Female germline stem cells (FGSCs) are adult stem cells capable of self-renewal and differentiation into mature oocytes. AKT3, a member of the AKT kinase family, plays crucial roles in multiple cellular processes, such as proliferation, migration, and apoptosis. However, the mechanism by which AKT3 affects the development of FGSCs is poorly understood.

View Article and Find Full Text PDF

Spermatogonial stem cells (SSCs) sustain and modulate spermatogenesis through intricate signaling pathways and transcription factors. Promyelocytic leukemia zinc-finger (, also known as ) has been identified as a critical transcription factor influencing various signaling and differentiation pathways. plays a pivotal role in regulating the differentiation properties of SSCs and is essential for the proper maintenance of spermatogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!