Among parasitic organisms, inbreeding has been implicated as a potential driver of host-parasite co-evolution, drug-resistance evolution and parasite diversification. Yet, fundamental topics about how parasite life histories impact inbreeding remain to be addressed. In particular, there are no direct selfing-rate estimates for hermaphroditic parasites in nature. Our objectives were to elucidate the mating system of a parasitic flatworm in nature and to understand how aspects of parasite transmission could influence the selfing rates of individual parasites. If there is random mating within hosts, the selfing rates of individual parasites would be an inverse power function of their infection intensities. We tested whether selfing rates deviated from within-host random mating expectations with the tapeworm Oochoristica javaensis. In doing so, we generated, for the first time in nature, individual selfing-rate estimates of a hermaphroditic flatworm parasite. There was a mixed-mating system where tapeworms self-mated more than expected with random mating. Nevertheless, individual selfing rates still had a significant inverse power relationship to infection intensities. The significance of this finding is that the distribution of parasite infection intensities among hosts, an emergent property of the transmission process, can be a key driver in shaping the primary mating system, and hence the level of inbreeding in the parasite population. Moreover, we demonstrated how potential population selfing rates can be estimated using the predicted relationship of individual selfing rates to intensities and showed how the distribution of parasites among hosts can indirectly influence the primary mating system when there is density-dependent fecundity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mec.14211 | DOI Listing |
G3 (Bethesda)
January 2025
Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91198 Gif-sur-Yvette, France.
Recombination is advantageous over the long-term, as it allows efficient selection and purging deleterious mutations. Nevertheless, recombination suppression has repeatedly evolved in sex and mating-type chromosomes. The evolutionary causes for recombination suppression and the proximal mechanisms preventing crossing overs are poorly understood.
View Article and Find Full Text PDFCurr Biol
January 2025
University of Victoria, Department of Biology, Finnerty Road, Victoria, BC V8P 5C2, Canada; The Kelp Rescue Initiative, Bamfield Marine Sciences Centre, Pachena Road, Bamfield, BC V0R 1B0, Canada. Electronic address:
Kelp forests are declining in many parts of the northeast Pacific. In small populations, genetic drift can reduce adaptive variation and increase fixation of recessive deleterious alleles, but natural selection may purge harmful variants. To understand evolutionary dynamics and inform restoration strategies, we investigated genetic structure and the outcomes of genetic drift and purging by sequencing the genomes of 429 bull kelp (Nereocystis luetkeana) and 211 giant kelp (Macrocystis sp.
View Article and Find Full Text PDFEvolution
December 2024
Department of Biology, Emory University, Atlanta, GA 30306, United States.
Baker's law is the observation that recently dispersed populations are more likely to be self-fertilizing than populations at the range core. The explanatory hypothesis is that dispersal favors self-fertilization due to reproductive assurance. Caenorhabditis elegans nematodes reproduce via either self-fertilization or outcrossing and frequently disperse in small numbers to new bacterial food sources.
View Article and Find Full Text PDFFront Plant Sci
November 2024
Department of Botany and Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States.
The mating system of non-native plant populations plays a role in determining the colonizing success following introduction into locations outside of the native distribution. For plant species capable of mixed-mating, both selfing and outcrossing can be advantageous and promote the establishment, persistence, and spread of newly arrived populations. To investigate how mating systems may contribute to the invasion process we estimated mating system parameters in perennial populations of the model plant species, from its native range (West coast USA), non-native populations that are established but have not become invasive (East coast USA, >50 years), and populations in invasive regions (UK >200 years).
View Article and Find Full Text PDFMol Ecol
December 2024
Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Facultad de Biología, Sevilla, Spain.
Species with extremely small population sizes are critically endangered because of reduced genetic diversity, increased inbreeding and hybridisation threats. Genomic tools significantly advance conservation by revealing genetic insights into endangered species, notably in monitoring frameworks. Sicilian fir (Abies nebrodensis) is the most endangered conifer in Europe with only 30 adult trees in an 84-ha area.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!