Plant transient expression using virus-based vectors is advantageous when high level of gene expression is desired within a short time. In this study, a new system, named "air-brush," has been developed to facilitate a scale-up production of recombinant proteins in plants. GFP was expressed successfully in (Nb) plants by air-brushing an suspension that contained the TMV-based vector p35S-30B-GFP. Key factors influencing the gene expression were optimized, including the cell density, seedling age, and the growth temperature of plant materials. In addition, the pharmaceutical protein human acidic fibroblast growth factor (ha FGF) was also expressed in Nb plants by the air-brush system. The results demonstrated that using this system is highly advantageous; it is convenient, quick, easily scaled-up, and has a higher expression efficiency than leaf infiltration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5466255PMC
http://dx.doi.org/10.1016/j.btre.2015.01.004DOI Listing

Publication Analysis

Top Keywords

transient expression
8
production recombinant
8
recombinant proteins
8
proteins plants
8
air-brushing suspension
8
gene expression
8
expressed plants
8
system
4
expression system
4
system large-scale
4

Similar Publications

LACCASE35 Enhances Lignification and Resistance Against Pseudomonas syringae pv. actinidiae Infection in Kiwifruit.

Plant Physiol

January 2025

Anhui Key Laboratory for Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, P.R.  China.

Kiwifruit bacterial canker, a highly destructive disease caused by Pseudomonas syringae pv. actinidiae (Psa), seriously affects kiwifruit (Actinidia spp.) production.

View Article and Find Full Text PDF

Objective: Using rabbit models, this study simulated the laryngopharynx's response to the synergistic effects of various acidic reflux environments and pepsin to investigate the response mechanism underlying weak acid reflux and pepsin in the mucosal barrier injury of laryngopharyngeal reflux.

Methods: The rabbits were divided into six groups, and the original larynx was recorded for each group. During the study period, rabbits were sprayed with different doses of acid and pepsin solutions and monitored for hypopharyngeal mucosal transient impedance before and after modeling.

View Article and Find Full Text PDF

The sense of hearing originates in the cochlea, which detects sounds across dynamic sensory environments. Like other peripheral organs, the cochlea is subjected to environmental insults, including loud, damage-inducing sounds. In response to internal and external stimuli, the central nervous system directly modulates cochlear function through olivocochlear neurons (OCNs), which are located in the brainstem and innervate the cochlear sensory epithelium.

View Article and Find Full Text PDF

Gibberellin regulates the synthesis of stone cells in 'Nanguo' pear via the PuMYB91-PuERF023 module.

Physiol Plant

January 2025

Key Laboratory of Fruit Postharvest Biology, Liaoning Province; College of Horticulture, Shenyang Agricultural University, Shenyang, China.

Stone cells are one of the limiting factors affecting pear fruit quality and commodity value. The formation of stone cell is highly correlated with lignin deposition. However, the molecular mechanism of stone cell formation and regulation is still unclear.

View Article and Find Full Text PDF

Calcium (Ca)-dependent signalling plays a well-characterised role in the perception and response mechanisms to environmental stimuli in plant cells. In the context of a constantly changing environment, it is fundamental to understand how crop yield and microalgal biomass productivity are affected by external factors. Ca signalling is known to be important in different physiological processes in microalgae but many of these signal transduction pathways still need to be characterised.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!