Ultrathin frozen sections were used to study the localization of cholecystokinin (CCK) in dopaminergic systems in the rat nucleus accumbens. Antibodies against CCK and tyrosine hydroxylase (TH), a synthetic enzyme of dopamine, were differentially visualized using protein A conjugated to colloidal gold particles of different sizes. Nerve processes were observed to be immunocytochemically labelled for either CCK or TH but also in some cases for both CCK and TH. CCK-like immunoreactivity was localized in vesicles with a diameter of 70-160 nm, whereas TH-like immunoreactivity was primarily localized in the axoplasm. Most of the double-labelled nerve processes did not show pre- or postsynaptic specializations and most likely represent preterminal elements.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0304-3940(85)90264-2DOI Listing

Publication Analysis

Top Keywords

rat nucleus
8
nucleus accumbens
8
nerve processes
8
immunoreactivity localized
8
simultaneous ultrastructural
4
ultrastructural localization
4
localization cholecystokinin-
4
cholecystokinin- tyrosine
4
tyrosine hydroxylase-like
4
hydroxylase-like immunoreactivity
4

Similar Publications

Differential Neuronal Activation of Nociceptive Pathways in Neuropathic Pain After Spinal Cord Injury.

Cell Mol Neurobiol

January 2025

Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.

Neuropathic pain, a prevalent complication following spinal cord injury (SCI), severely impairs the life quality of patients. No ideal treatment exists due to incomplete knowledge on underlying neural processes. To explore the SCI-induced effect on nociceptive circuits, the protein expression of c-Fos was analyzed as an indicator of neuronal activation in a rat contusion model exhibiting below-level pain.

View Article and Find Full Text PDF

Adolescence is a developmental period marked by significant alterations to brain neurobiology and behavior. Adolescent nicotine use disrupts developmental trajectories and increases vulnerability to maladaptive drug-taking in adulthood. The mesolimbic dopamine (DA) system, including the nucleus accumbens core (NAc), mediates the reinforcing effects of nicotine.

View Article and Find Full Text PDF

Intervertebral disc degeneration (IVDD) is a leading cause of low back pain, primarily driven by inflammatory processes within the disc, particularly involving the infiltration and activity of macrophages. High Mobility Group Box 1 (HMGB1) has been identified as a crucial mediator in this inflammatory cascade, yet its precise role in macrophage-induced disc degeneration remains unclear. In this study, we employed a combination of in vivo and in vitro models, including genetically engineered mice with macrophage-specific overexpression of HMGB1, a rat model of IVDD, and cultured macrophages and nucleus pulposus cells (NPCs), to elucidate the role of HMGB1 in IVDD.

View Article and Find Full Text PDF

Baicalein-loaded porous silk fibroin microspheres modulate the senescence of nucleus pulposus cells through the NF-κB signaling pathway.

Colloids Surf B Biointerfaces

January 2025

The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou 510130, PR China; Guangzhou University of Chinese Medicine Postdoctoral Research Station, Guangzhou 510130, PR China. Electronic address:

Intervertebral disc degeneration (IVDD), an age-associated degenerative condition, significantly contributes to low back pain, thereby adversely affecting individual health and quality of life, while also imposing a substantial societal burden. Baicalein, a natural flavonoid derived from Scutellaria baicalensis Georgi, demonstrates a range of pharmacological activities, including antioxidant, anti-inflammatory, anti-tumor, and antibacterial properties. This positions it as a promising candidate for the treatment of IVDD through intradiscal drug delivery.

View Article and Find Full Text PDF

Graphene oxide scaffolds promote functional improvements mediated by scaffold-invading axons in thoracic transected rats.

Bioact Mater

May 2025

Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain.

Millions of patients and their caretakers live and deal with the devastating consequences of spinal cord injury (SCI) worldwide. Despite outstanding advances in the field to both understand and tackle these pathologies, a cure for SCI patients, with their peculiar characteristics, is still a mirage. One of the most promising therapeutic strategies to date for these patients involves the use of epidural electrical stimulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!