, a Gram-negative facultative anaerobe, exhibits the native capacity to convert pentose and hexose sugars to succinic acid (SA) with high yield as a tricarboxylic acid (TCA) cycle intermediate. In addition, is capnophilic, incorporating CO into SA, making this organism an ideal candidate host for conversion of lignocellulosic sugars and CO to an emerging commodity bioproduct sourced from renewable feedstocks. In this work, we report the development of facile metabolic engineering capabilities in , enabling examination of SA flux determinants via knockout of the primary competing pathways-namely, acetate and formate production-and overexpression of the key enzymes in the reductive branch of the TCA cycle leading to SA. Batch fermentation experiments with the wild-type and engineered strains using pentose-rich sugar streams demonstrate that the overexpression of the SA biosynthetic machinery (in particular, the enzyme malate dehydrogenase) enhances flux to SA. Additionally, removal of competitive carbon pathways leads to higher-purity SA but also triggers the generation of by-products not previously described from this organism (e.g., lactic acid). The resultant engineered strains also lend insight into energetic and redox balance and elucidate mechanisms governing organic acid biosynthesis in this important natural SA-producing microbe. Succinic acid production from lignocellulosic residues is a potential route for enhancing the economic feasibility of modern biorefineries. Here, we employ facile genetic tools to systematically manipulate competing acid production pathways and overexpress the succinic acid-producing machinery in Furthermore, the resulting strains are evaluated via fermentation on relevant pentose-rich sugar streams representative of those from corn stover. Overall, this work demonstrates genetic modifications that can lead to succinic acid production improvements and identifies key flux determinants and new bottlenecks and energetic needs when removing by-product pathways in metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5561298PMC
http://dx.doi.org/10.1128/AEM.00996-17DOI Listing

Publication Analysis

Top Keywords

succinic acid
16
acid production
12
metabolic engineering
8
acid
8
acid biosynthesis
8
tca cycle
8
flux determinants
8
engineered strains
8
pentose-rich sugar
8
sugar streams
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!