Although it has long been appreciated that p300 acts as a critical Notch coactivator, the mechanistic details of p300 in Notch-mediated transcription remain unclear. We previously demonstrated that PEAK1-related kinase activating pseudokinase 1 (NACK), also known as SGK223, is a critical coactivator of Notch signaling and binds to the Notch1 ternary complex. Herein we report that p300 and CBP acetylate Mastermind-like 1 (Maml1) on amino acid residues K188 and K189 to recruit NACK to the Notch1 ternary complex, which results in the recruitment of RNA polymerase II to initiate transcription. NACK is recruited to the ternary complexes containing Maml1 and Maml3, but not Maml2. Simultaneous inhibition of p300/CBP and Notch has a synergistic effect in esophageal adenocarcinoma. In summary, this study provides a deeper mechanistic understanding of the assembly of the Notch transcriptional complex and provides rationale and proof of concept for a combinatorial therapeutic attack on Notch-dependent cancers. .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-16-3156 | DOI Listing |
Cell Commun Signal
September 2021
Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, 1600 NW 10th Ave, Miami, FL, 33136, USA.
Background: Notch signaling drives many aspects of neoplastic phenotype. Here, we report that the Integrator complex (INT) is a new component of the Notch transcriptional supercomplex. Together with Notch Activation Complex Kinase (NACK), INT activates Notch1 target genes by driving RNA polymerase II (RNAPII)-dependent transcription, leading to tumorigenesis.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2019
Engineering Research Center of Molecular Medicine, Ministry of Education, China. Fujian Provincial Key Laboratory of Molecular Medicine, School of Medicine, Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian Province, 361021, China. Electronic address:
Human T-cell leukemia virus 1 (HTLV-1), an oncogenic retrovirus, and Notch1 signaling, implicated in tumor formation and progression, are both associated with the development of adult T-cell leukemia (ATL). Here we explored the possibility of a mechanistic link between the two. We observed that the expression of Notch intracellular domain (NICD) was elevated in HTLV-1 infected cell lines.
View Article and Find Full Text PDFCell Death Differ
March 2018
Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland.
The Notch signaling pathway is a key regulator of stem cells during development, and its deregulated activity is linked to developmental defects and cancer. Transcriptional activation of Notch target genes requires cleavage of the Notch receptor in response to ligand binding, production of the Notch intracellular domain (NICD1), NICD1 migration into the nucleus, and assembly of a transcriptional complex. Post-translational modifications of Notch regulate its trafficking, turnover, and transcriptional activity.
View Article and Find Full Text PDFCancer Res
August 2017
Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida.
Although it has long been appreciated that p300 acts as a critical Notch coactivator, the mechanistic details of p300 in Notch-mediated transcription remain unclear. We previously demonstrated that PEAK1-related kinase activating pseudokinase 1 (NACK), also known as SGK223, is a critical coactivator of Notch signaling and binds to the Notch1 ternary complex. Herein we report that p300 and CBP acetylate Mastermind-like 1 (Maml1) on amino acid residues K188 and K189 to recruit NACK to the Notch1 ternary complex, which results in the recruitment of RNA polymerase II to initiate transcription.
View Article and Find Full Text PDFBMC Genomics
August 2016
Department of Cellular and Molecular Immunology, Proteomics Core Facility, Max-Planck-Institute of Immunobiology and Epigenetics, D-79108, Freiburg, Germany.
Background: The motif ACTAYRNNNCCCR (Y being C or T, R being A or G, and N any nucleotide), called M4, was discovered as a putative cis-regulatory element, present 520 times in human promoter regions. Of these, 317 (61 %) are conserved within promoter sequences of four related organisms: human, mouse, rat, and dog. Recent genome-wide studies have described M4 as a transcription factor (TF) binding site for THAP11 that does often overlap with SBS (STAF Binding Site) a second core-promoter associated TF binding module, which associates with the TFs STAF/ZNF143 and RBP-J.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!