Feedback loops interlocked at competitive binding sites amplify and facilitate genetic oscillations.

J Theor Biol

Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan. Electronic address:

Published: September 2017

Positive and negative feedback loops are often present in regulatory networks for genetic oscillations. Relative time scales and integration of these feedback loops are key to robust oscillations in expression levels. Using examples from the circadian clock and synthetic genetic oscillators, we study positive and negative feedback loops interlocked at competitive binding sites. In the mammalian circadian clock, a key clock gene Bmal1 is regulated by the activator ROR and the repressor REV-ERB. Conversely, Bmal1 activates both of them, forming interlocked feedback loops. Previous experiments indicate that the activator and repressor compete for the same binding sites in the Bmal1 promoter. Transcription patterns predict that ROR peaks later than REV-ERB and, moreover, the peak phase difference between them is small. Using mathematical modeling we reveal an optimal ratio of dissociation constants of an activator and a repressor for the competitive binding sites to enhance the amplitude of Bmal1 oscillations. This optimal ratio arises only when the amplitude of the repressor is larger than that of the activator. Secondly, we reveal that the preference of binding sites for an activator and a repressor depends on their relative time scales. A previous study demonstrated that noncompetitive binding sites are preferable for synthetic genetic oscillators that comprise a fast activator and a slow repressor with a large time scale separation. Here we show that when their time scales are similar, competitive binding sites are more likely to generate oscillation than noncompetitive sites. In contrast, for a slow activator and a fast repressor with a small phase difference as in Bmal1 regulation, noncompetitive binding sites are advantageous for amplifying oscillations. Our results, therefore, predict that additional mechanisms are necessary to compensate the disadvantage of the Bmal1 promoter and further facilitate amplification under the regulation by ROR and REV-ERB.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2017.06.005DOI Listing

Publication Analysis

Top Keywords

binding sites
32
feedback loops
20
competitive binding
16
time scales
12
activator repressor
12
sites
9
loops interlocked
8
interlocked competitive
8
binding
8
genetic oscillations
8

Similar Publications

Coordinated regulation of two LacI family regulators, GvmR and GvmR2, on guvermectin production in .

Synth Syst Biotechnol

November 2024

Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, 150030, China.

Guvermectin, a purine nucleoside natural product produced by the genus S, has recently been registered as a new biopesticide to boost rice yield. Despite its economic and agricultural significance, the regulatory mechanisms of guvermectin biosynthesis remain essentially unknown, hindering industrial production and widespread agricultural application. Here, we examined the roles of two LacI family regulators, and , located within and adjacent to the guvermectin biosynthesis cluster, respectively, in guvermectin production in NEAU6.

View Article and Find Full Text PDF

Members of the genus are the conventional medicinal plants used in the therapeutic management of numerous ailments, especially for their antioxidant and pharmacological activities. The crude extract of was profiled using high-resolution GC-MS and LC-MS/MS techniques to determine possible bioactive compounds that are vital to the antioxidant activity. A total of 52 and 63 bioactive compounds have been detected in GC-MS chromatograms using different solvents (methanol and ethanol) in leaf extracts, representing the presence of certain bioactive compounds.

View Article and Find Full Text PDF

Objective: The Heat Shock Protein 70 (HSP70) family is a highly conserved group of molecular chaperones essential for maintaining cellular homeostasis. These proteins are necessary for protein folding, assembly, and degradation and involve cell recovery from stress conditions. HSP70 proteins are upregulated in response to heat shock, oxidative stress, and pathogenic infections.

View Article and Find Full Text PDF

The conformational dynamics and activation mechanisms of KRAS proteins are of great importance for targeted cancer therapy. However, the detailed molecular mechanics of KRAS activation induced by GTP binding remains unclear. In this study, we systematically investigated how GTP/GDP exchange affects the thermodynamic and kinetic properties of KRAS and explored the activation mechanism using molecular dynamics (MD) simulations, Markov state models (MSMs), and neural relational inference (NRI) models.

View Article and Find Full Text PDF

The reaction mechanisms of ethylene oxide and propylene oxide with food Simulants: Based on experiments and computational analysis.

Food Res Int

February 2025

College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China. Electronic address:

Ethylene oxide (EO) and propylene oxide (PO) are widely used as sterilizing agents in the food industry. However, their residues in food packaging can migrate into food and react with it, affecting the accuracy of residue detection in food. This study aims to explore the reaction mechanisms between EO and PO and aqueous food simulants using both experimental and computational methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!