Background: A defective mucosal barrier function is the principal cause of the uncontrolled onset and progression of a number of human inflammatory gut diseases, most of which are characterized by chronic intermittent immune and inflammatory responses leading to structural intestinal damage, which can represent a potential risk for colorectal cancer development. During the active disease phase the production of pro-inflammatory cytokines and chemokines, and the induction of oxidative reactions by activated leukocytes and epithelial cells represent the main event in the intestinal inflammation.

Objective: Oxidative stress plays a key role in the development of intestinal damage. Indeed reactive oxygen species and their oxidized by-products regulate redox-sensitive signaling pathways and transcription factors, which sustain inflammation within the intestinal layer.

Methods: Polyunsaturated fatty acids and cholesterol are the principal targets of oxidative modifications. These lipids, which are cell membrane constituents or are present in food, readily undergo non-enzymatic oxidation to form chemically-reactive species that can induce a wide range of biological effects including inflammation, programmed cell death, and proliferation.

Results And Conclusions: In this review we summarize the current knowledge on the role of lipid oxidation products in regulating redox pathways involved in the pathogenesis of inflammation- related gut diseases. In particular, lipid peroxidation end products, such as isoprostanes and aldehydes, and cholesterol oxidation-derived oxysterols are taken into consideration. The control of oxidative damage and consequently tissue local over-production of lipid oxidation products by using specific antioxidant and anti-inflammatory molecules in the diet may have clinical and therapeutic benefits.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0929867324666170619104105DOI Listing

Publication Analysis

Top Keywords

lipid oxidation
12
oxidation products
12
gut diseases
12
intestinal damage
8
lipid
4
products
4
products pathogenesis
4
pathogenesis inflammation-related
4
inflammation-related gut
4
diseases background
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!