Memory dynamics under stress.

Memory

a Department of Cognitive Psychology , Institute of Psychology, University of Hamburg, Hamburg , Germany.

Published: March 2018

Stressful events have a major impact on memory. They modulate memory formation in a time-dependent manner, closely linked to the temporal profile of action of major stress mediators, in particular catecholamines and glucocorticoids. Shortly after stressor onset, rapidly acting catecholamines and fast, non-genomic glucocorticoid actions direct cognitive resources to the processing and consolidation of the ongoing threat. In parallel, control of memory is biased towards rather rigid systems, promoting habitual forms of memory allowing efficient processing under stress, at the expense of "cognitive" systems supporting memory flexibility and specificity. In this review, we discuss the implications of this shift in the balance of multiple memory systems for the dynamics of the memory trace. Specifically, stress appears to hinder the incorporation of contextual details into the memory trace, to impede the integration of new information into existing knowledge structures, to impair the flexible generalisation across past experiences, and to hamper the modification of memories in light of new information. Delayed, genomic glucocorticoid actions might reverse the control of memory, thus restoring homeostasis and "cognitive" control of memory again.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09658211.2017.1338299DOI Listing

Publication Analysis

Top Keywords

control memory
12
memory
11
glucocorticoid actions
8
memory trace
8
memory dynamics
4
stress
4
dynamics stress
4
stress stressful
4
stressful events
4
events major
4

Similar Publications

Neuropsychological test performance in mild cognitive impairment with Lewy bodies: A systematic review and meta-analysis.

Alzheimers Dement

January 2025

Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Stockholm, Sweden.

Background: We sought to characterize the cognitive profile among individuals with mild cognitive impairment with Lewy bodies (MCI-LB) to help guide future clinical criteria.

Methods: Systematic review and meta-analysis included MCI-LB studies with cognitive data from PubMed, Embase, Web of Science, and PsycINFO (January 1990 to March 2023). MCI-LB scores were compared to controls, MCI due to Alzheimer's disease (MCI-AD), and dementia with Lewy bodies (DLB) groups with random-effects models.

View Article and Find Full Text PDF

Background: Cognitive reserve (CR), typically measured through socio-behavioral proxies, can partially explain better cognitive performance despite underlying brain aging or neuropathology.

Objective: To examine the associations of CR with mild cognitive impairment (MCI) and cognitive function while considering Alzheimer's disease (AD)-related plasma biomarkers.

Methods: This population-based cross-sectional study included 4706 dementia-free individuals from MIND-China.

View Article and Find Full Text PDF

Background: Plasma biomarkers demonstrated potential in identifying amyloid pathology in early Alzheimer's disease. Different subtypes of subjective cognitive decline (SCD) may lead to different cognitive impairment conversion risks.

Objective: To investigate the differences of plasma biomarkers in SCD subtypes individuals, which were unclear.

View Article and Find Full Text PDF

Background: Liquid-Liquid Phase Separation (LLPS) is a process involved in the formation of established organelles and various condensates that lack membranes; however, the relationship between LLPS and Ulcerative Colitis (UC) remains unclear.

Aims: This study aimed to comprehensively clarify the correlation between ulcerative colitis (UC) and liquid-liquid phase separation (LLPS).

Objectives: In this study, bioinformatics analyses and public databases were applied to screen and validate key genes associated with LLPS in UC.

View Article and Find Full Text PDF

Non-volatile electronic memory elements are very attractive for applications, not only for information storage but also in logic circuits, sensing devices and neuromorphic computing. Here, a ferroelectric film of guanine nucleobase is used in a resistive memory junction sandwiched between two different ferromagnetic films of Co and CoCr alloys. The magnetic films have an in-plane easy axis of magnetization and different coercive fields whereas the guanine film ensures a very long spin transport length, at 100 K.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!