Physiological and molecular responses of the earthworm Eisenia fetida to polychlorinated biphenyl contamination in soil.

Environ Sci Pollut Res Int

Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.

Published: August 2017

Polychlorinated biphenyls (PCBs) are a class of man-made organic compounds ubiquitously present in the biosphere. In this study, we evaluated the toxic effects of different concentrations of PCBs in two natural soils (i.e. red soil and fluvo-aquic soil) on the earthworm Eisenia fetida. The parameters investigated included anti-oxidative response, genotoxic potential, weight variation and biochemical responses of the earthworm exposed to two different types of soils spiked with PCBs after 7 or 14 days of exposure. Earthworms had significantly lower weights in both soils after PCB exposure. PCBs significantly increased catalase (CAT), superoxide dismutase (SOD), and guaiacol peroxidase (POD) activity in earthworms exposed to either soil type for 7 or 14 days and decreased the malondialdehyde (MDA) content in earthworms exposed to red soil for 14 days. Of the enzymes examined, SOD activity was the most sensitive to PCB stress. In addition, PCB exposure triggered dose-dependent coelomocyte DNA damage, even at the lowest concentration tested. This response was relatively stable between different soils. Three-way analysis of variance (ANOVA) showed that the weight variation, anti-oxidant enzyme activities, and MDA contents were significantly correlated with exposure concentration or exposure duration (P < 0.01). Furthermore, weight variation, CAT activity, and SOD activity were significantly affected by soil type (P < 0.01). Therefore, the soil type and exposure time influence the toxic effects of PCBs, and these factors should be considered when selecting responsive biomarkers.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-017-9383-9DOI Listing

Publication Analysis

Top Keywords

responses earthworm
8
earthworm eisenia
8
eisenia fetida
8
red soil
8
weight variation
8
pcb exposure
8
earthworms exposed
8
soil
5
exposure
5
physiological molecular
4

Similar Publications

Enantioselective Assessment of Etoxazole Enantiomers in Earthworms (): Bioaccumulation, Degradation, Transcriptome, and Oxidative Stress.

J Agric Food Chem

January 2025

Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.

This study systemically investigated the enantioselective bioaccumulation and degradation of etoxazole (ETZ) in earthworms along with the transcriptome and oxidative stress responses to ETZ enantiomer exposure. Based on the M-shaped bioaccumulation trends for ETZ enantiomers, -ETZ was found to be preferentially bioaccumulated in earthworms. Sublethal toxicity analysis showed that -ETZ induced greater changes in protein content, malondialdehyde content, detoxifying metabolic enzyme activity, and oxidative stress in earthworms, compared to those induced by -ETZ.

View Article and Find Full Text PDF

Unveiling the impact of polystyrene and low-density polyethylene microplastics on arsenic toxicity in earthworms.

J Environ Manage

December 2024

College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing, 100193, China. Electronic address:

The high global production combined with low recycling rates of polystyrene (PS) and low-density polyethylene (LDPE) contributes to the abundance of these commonly used plastics in soil, including as microplastics (MPs). However, the combined effects of MPs and heavy metals, such as arsenic (As) on earthworms are poorly understood. Here, we show that neither PS nor LDPE altered the effects of As on the survival, growth, and reproduction of the earthworm Eisenia fetida.

View Article and Find Full Text PDF

Lower toxicity of HFPO-DA compared to its predecessor PFOA to the earthworm Eisenia fetida: Evidence from oxidative stress and transcriptomic analysis.

J Hazard Mater

December 2024

College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China. Electronic address:

Hexafluoropropylene oxide dimer acid (HFPO-DA), an emerging perfluoroalkyl substance (PFAS) that is replacing traditional PFASs, has a wide range of industrial applications and has been detected globally in the environment. However, it remains unclear whether HFPO-DA, is genuinely less toxic than perfluorooctanoic acid (PFOA) in terms of soil environmental hazards. Therefore, this study aimed to compare differences in toxicity between PFOA and its substitute, HFPO-DA, in a common species of earthworm, Eisenia fetida.

View Article and Find Full Text PDF

Earthworm occurrence dataset extracted from Russian-language literature.

Biodivers Data J

December 2024

Institute of Mathematical Problems of Biology RAS - the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, Russia Institute of Mathematical Problems of Biology RAS - the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences Pushchino Russia.

Background: Earthworms are one of the most important components of temperate ecosystems and groups of soil animals globally, but data on their distribution around the world are still incomplete and uneven. Northern Eurasia is a region for which available data on earthworm distribution is extremely poor. At the same time, generations of Soviet and Russian researchers have performed extensive research and accumulated a large amount of data on the distribution of earthworms in this vast region.

View Article and Find Full Text PDF

Neuroinflammation, especially microglia/macrophage activation, is a hallmark of spinal cord injury (SCI). Jisuikang (JSK) is a clinical experiential Chinese herbal formula for SCI therapy containing Huangqi (Astragali Radix), Danggui (Angelica sinensis Radix), Chishao (Paeoniae Radix Rubra), Dilong (earthworm, Pheretima aspergillum), Chuanxiong (Chuanxiong Rhizoma), Taoren (Persicae Seman) and Honghua (Carthami Flos). Eighteen active ingredients in 6 herbs of JSK were found to be correlated with inflammation, spinal injury and other diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!