Gammarus fossarum is an often-abundant crustacean detritivore that contributes importantly to leaf litter breakdown in oligotrophic, mainly heterotrophic, headwater streams. This species requires large amounts of Ca to moult, thus allowing growth and reproduction. Because resource quality is tightly coupled to the organism's growth and physiological status, we hypothesised that low Ca concentration [Ca] and low food resource quality (low phosphorus [P] and/or reduced highly unsaturated fatty acid [HUFA] contents) would interactively impair molecular responses (gene expression) and reproduction of G. fossarum. To investigate the effects of food resources quality, we experimentally manipulated the P content of sycamore leaves and also used diatoms because they contain high amounts of HUFAs. Three resource quality treatments were tested: low quality (LQ, unmanipulated leaves: low P content), high quality 1 (HQ1; P-manipulated leaves: high P content), and high quality 2 (unmanipulated leaves supplemented with a pellet containing diatoms: high P and HUFA content). Naturally, demineralised stream water was supplemented with CaSO to obtain three Ca concentrations (2, 3.5, and 10.5 mg Ca L). For 21 days, pairs of G. fossarum were individually exposed to one of the nine treatments (3 [Ca] × 3 resource qualities). At the individual level, strong and significant delays in moult stage were observed in gammarids exposed to lower [Ca] and to lower resource quality, with additive effects lengthening the duration of the reproductive cycle. Effects at the molecular level were investigated by measuring expression of 12 genes involved in energy production, translation, or Ca or P homeostasis. Expression of ATP synthase beta (higher in HQ2), calcified cuticle protein (higher in HQ1 and HQ2), and tropomyosin (higher in HQ2 compared to HQ1) was significantly affected by resource quality, and significant additive effects on Ca transporting ATPase expression were induced by [Ca] and resource quality (higher for low [Ca] and higher resource quality). These results highlight the potential drastic deleterious effects of water [Ca] depletion on G. fossarum physiology, populations, and ecosystem functioning, especially in oligotrophic environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-017-9390-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!