In this study, a tailor-made biocatalyst consisting of a co-immobilized lignolytic enzyme cascade on multi-functionalized magnetic silica microspheres (MSMS) was developed. Physical adsorption was the most promising strategy for the synthesis of individual immobilized laccase (IL), immobilized versatile peroxidase (IP), as well as co-immobilized laccase (Lac) and versatile peroxidase (VP) with an enzyme activity recovery of about 79, 93, 27, and 27.5%, respectively. Similarly, the biocatalytic load of 116, 183, 23.6, and 31 U/g was obtained for IL, IP, and co-immobilized Lac and VP, respectively. The co-immobilized enzyme system exhibited better pH stability than the free and individual immobilized system by retaining more than 100% residual activity at pH 7.0 after a 150-h incubation; whereas, the thermal stability and kinetics of the co-immobilized biocatalyst were not much improved. IL and IP could be recycled for 10 cycles after which they retained 31 and 44% of their initial activities. Co-immobilized Lac and VP were reused for ten consecutive cycles at the end of which Lac activity was depleted, and 37% of VP activity was left. Free enzymes, IL, IP, co-immobilized Lac, and VP were applied to biorefinery wastewater (BRW) in a batch study to investigate the transformation of phenolic contaminants over a period of 5 days. The major classes of phenolic constituents in terms of their order of removal in a Lac-VP system was phenol >2-chlorophenol > trichlorophenol > dichlorophenol > cresols > dimethylphenol >2 methyl- 4, 6-dinitrophenol > 4-nitrophenol > tetrachlorophenols > pentachlorophenol. The free enzymes and individually immobilized enzymes resulted in 80% dephenolization in 5 days. By contrast, the co-immobilized biocatalyst provided rapid dephenolization yielding the same 80% removal within 24 h and 96% removal of phenols in 60 h after which the system stabilized, which is the major advantage of the co-immobilized biocatalyst. ᅟ Graphical abstract.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-017-9318-5DOI Listing

Publication Analysis

Top Keywords

versatile peroxidase
12
co-immobilized lac
12
co-immobilized biocatalyst
12
co-immobilized
9
magnetic silica
8
silica microspheres
8
biorefinery wastewater
8
individual immobilized
8
free enzymes
8
lac
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!