Greenbug and Hessian fly are important pests that decrease wheat production worldwide. We developed and validated breeder-friendly KASP markers for marker-assisted breeding to increase selection efficiency. Greenbug (Schizaphis graminum Rondani) and Hessian fly [Mayetiola destructor (Say)] are two major destructive insect pests of wheat (Triticum aestivum L.) throughout wheat production regions in the USA and worldwide. Greenbug and Hessian fly infestation can significantly reduce grain yield and quality. Breeding for resistance to these two pests using marker-assisted selection (MAS) is the most economical strategy to minimize losses. In this study, doubled haploid lines from the Synthetic W7984 × Opata M85 wheat reference population were used to construct linkage maps for the greenbug resistance gene Gb7 and the Hessian fly resistance gene H32 with genotyping-by-sequencing (GBS) and 90K array-based single nucleotide polymorphism (SNP) marker data. Flanking markers were closely linked to Gb7 and H32 and were located on chromosome 7DL and 3DL, respectively. Gb7-linked markers (synopGBS773 and synopGBS1141) and H32-linked markers (synopGBS901 and IWB65911) were converted into Kompetitive Allele Specific PCR (KASP) assays for MAS in wheat breeding. In addition, comparative mapping identified syntenic regions in Brachypodium distachyon, rice (Oryza sativa), and sorghum (Sorghum bicolor) for Gb7 and H32 that can be used for fine mapping and map-based cloning of the genes. The KASP markers developed in this study are the first set of SNPs tightly linked to Gb7 and H32 and will be very useful for MAS in wheat breeding programs and future genetic studies of greenbug and Hessian fly resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-017-2930-4DOI Listing

Publication Analysis

Top Keywords

hessian fly
24
resistance gene
16
kasp markers
12
fly resistance
12
greenbug hessian
12
gb7 h32
12
greenbug resistance
8
gene gb7
8
gb7 hessian
8
gene h32
8

Similar Publications

Unlabelled: Black soldier fly larvae (BSFL) have attracted attention due to their ability to upcycle various biological side streams into valuable biomass, such as proteins, lipids, and chitin. In this study, we investigated the impact of high-fiber diets on larval growth performance and the shift of microbes in the gut. We tested empty fruit bunches (EFB), potato pulp (PP), and cottonseed press cake (CPC), with chicken feed (CF) used as a control diet.

View Article and Find Full Text PDF

The Hessian fly, Mayetiola destructor (Say) belonging to the order Diptera (family: Cecidomyiidae), is a destructive pest of host wheat (Triticum aestivum L.) causing significant economic losses. Although planting resistant wheat cultivars harboring an effective Hessian fly resistance gene (H) is the most economical and environmentally friendly pest management strategy, it imposes selection pressure on the insect populations and can lead to the evolution of Hessian fly virulence.

View Article and Find Full Text PDF

Evaluating a worldwide wheat collection for resistance to Hessian fly biotype 'Great Plains'.

Front Plant Sci

May 2024

Hard Winter Wheat Genetics Research Unit, Agricultural Research Service, US Department of Agriculture (USDA-ARS), Manhattan, KS, United States.

Hessian fly (HF), , is a major insect pest that causes severe losses in grain yield and quality of wheat (). Growing resistant cultivars is the most cost-effective approach to minimize wheat yield losses caused by HF. In this study, 2,496 wheat accessions were screened for resistance to the HF biotype 'Great Plains' (GP) in the greenhouse experiments.

View Article and Find Full Text PDF

Hessian fly (Mayetiola destructor Say) is a significant pest in cereal crops, causing substantial yield losses worldwide. While host resistance is the most efficient method for pest control, research on genetic characterization of Hessian fly resistance in barley (Hordeum vulgare L.) has been limited, and the underlying resistance mechanism remains largely unknown.

View Article and Find Full Text PDF

The Hessian fly, Mayetiola destructor (Say), is one of the most important insect pest plaguing wheat (Triticum aestivum, L) producers across the United States and around the world. Genetic resistance is the stalwart for control of Hessian fly. However, new genotypes (biotypes) arise in deployment of wheat containing resistance genes, so field populations must be evaluated periodically to provide information on the efficacy of those deployed genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!