Semaphorins form a family of secreted and membrane-bound molecules that were identified originally as axonal guidance factors during neuronal development. Given their wide distribution in many including mature tissues, semaphorin 4D (sema4D) and its main functional receptor plexin B1 (plxnB1) are expected to fulfill additional functions that remain to be uncovered. A main characteristic of the plexin receptor family is its ability to reorganize the cytoskeleton. PlxnB1 specifically may directly interact with Rho family GTPases to regulate F-actin driven pathways in cells in culture. Diurnal clearance phagocytosis by the retinal pigment epithelium (RPE) of photoreceptor outer segment fragments (POS) is critical for photoreceptor function and longevity. In this process, rearrangement of RPE cytoskeletal F-actin via activation of the Rho family GTPase Rac1 is essential for POS internalization. Here, we show a novel role in POS phagocytosis by RPE cells in culture and in vivo for plexin B1 and its ligand sema4D. Exogenous sema4D abolishes POS internalization (but not binding) by differentiated RPE cells in culture by decreasing the GTP load of Rac1. In the rat eye, sema4D localizes to retinal photoreceptors, while PlxnB1 is expressed by neighboring RPE cells. At the peak of diurnal retinal phagocytosis after light onset, plxnB1 phosphorylation and sema4D levels are reduced in wild-type rat retina in situ but not in mutant RCS rat retina in which the RPE lacks phagocytic activity. Finally, increased POS phagosome content after light onset is observed in the RPE in situ of mice with either plxnB1 or sema4D gene deletion. Altogether, our results demonstrate a novel physiological function for sema4D/plxnB1 signaling in RPE phagocytosis serving as attenuating brake prior to light onset whose release enables the diurnal phagocytic burst.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5733634 | PMC |
http://dx.doi.org/10.1007/s12035-017-0649-5 | DOI Listing |
ACS Appl Bio Mater
January 2025
Koç University Translational Medicine Research Center, Koç University, Istanbul 34450, Turkey.
There is growing interest in generating in vitro models of tissues and tissue-related diseases to mimic normal tissue organization and pathogenesis for different purposes. The retina is a highly complex multicellular tissue where the organization of the cellular components relative to each other is critical for retinal function. Many retinopathies arise due to the disruption of this order.
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
January 2025
Department of Ophthalmology, University Hospital Munster, Munster, Germany.
Purpose: The retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age-related macular degeneration (AMD) and other retinal degenerative diseases. The introduction of healthy RPE cell cultures into the subretinal space offers a potential treatment strategy. The aim of this study was the long-term culture and characterisation of RPE cells on nanofiber scaffolds.
View Article and Find Full Text PDFJ Microsc
January 2025
Faculty of Medicine Carl Gustav Carus, Experimental Center, Technische Universität Dresden, Dresden, Germany.
Ribosomes, discovered in 1955 by George Palade, were initially described as small cytoplasmic particles preferentially associated with the endoplasmic reticulum (ER). Over the years, extensive research has focused on both the structure and function of ribosomes. However, a fundamental question - how many ribosomes are present within whole cells - has remained largely unaddressed.
View Article and Find Full Text PDFbioRxiv
December 2024
Spotlight Therapeutics, Hayward, CA, USA.
Genetic medicines, including CRISPR/Cas technologies, extend tremendous promise for addressing unmet medical need in inherited retinal disorders and other indications; however, there remain challenges for the development of therapeutics. Herein, we evaluate genome editing by engineered Cas9 ribonucleoproteins (eRNP) in vivo via subretinal administration using mouse and pig animal models. Subretinal administration of adenine base editor and double strand break-inducing Cas9 nuclease eRNPs mediate genome editing in both species.
View Article and Find Full Text PDFExp Eye Res
January 2025
Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India. Electronic address:
Autophagy is common in the aging retinal pigment epithelium (RPE). A dysfunctional autophagy in aged RPE is implicated in the pathogenesis of age-related macular degeneration. Aging human retina accompanies degenerative changes in photoreceptor mitochondria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!