Innate immune system capabilities of the Asian citrus psyllid, Diaphorina citri.

J Invertebr Pathol

University of Florida, North Florida Research and Education Center, 155 Research Rd, Quincy, FL, USA. Electronic address:

Published: September 2017

Citrus production worldwide is currently threatened by Huanglongbing, or citrus greening disease. The associated pathogen, Candidatus Liberibacter asiaticus (CLas), is transmitted by the Asian citrus psyllid, Diaphorina citri. Annotation of the D. citri genome revealed a reduced innate immune system lacking a number of antimicrobial peptides and the Imd pathway associated with defense against Gram-negative bacteria. We characterized this apparent immune reduction in survival assays in which D. citri were exposed to Gram-negative or Gram-positive bacteria. D. citri experienced significant mortality when exposed to Serratia marcescens (Gram-negative) through oral ingestion or by septic injury. Escherichia coli (Gram-negative) also caused significant D. citri mortality, but only when inoculated at high concentrations through oral ingestion or by septic injury. Neither Micrococcus luteus (Gram-positive) or Bacillus subtilis (Gram-positive) caused significant mortality as compared to controls in any experiment. E. coli titers increased rapidly following exposure, while M. luteus titer remained stable for 72 h. We demonstrate that D. citri is capable of defending against E. coli, a Gram-negative bacterium, despite lacking the Imd defense pathway. The tolerance of D. citri to M. luteus infection, yet inability to effectively clear infections, presents questions to efficacy of D. citri immune response to effectively clear Gram-positive infections.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jip.2017.06.002DOI Listing

Publication Analysis

Top Keywords

citri
9
innate immune
8
immune system
8
asian citrus
8
citrus psyllid
8
psyllid diaphorina
8
diaphorina citri
8
oral ingestion
8
ingestion septic
8
septic injury
8

Similar Publications

Citrus canker poses a serious threat to a highly significant citrus fruit crop, this disease caused by one of the most destructive bacterial plant pathogens Xanthomonas citri pv. citri (Xcc). Bacterial plant diseases significantly reduce crop yields worldwide, making it more difficult to supply the growing food demand.

View Article and Find Full Text PDF

The Citri Reticulatae Pericarpium (CRP), is the aged peel of Citrus fruit, which contains phenols, flavonoids, and polysaccharides. This study aims to investigate dietary CRP supplementation on the growth performance, serum biochemical indices, meat quality, intestinal morphology, microbiota, and metabolite of yellow-feathered broilers. A total of 240 yellow-feathered broilers (1.

View Article and Find Full Text PDF

Objectives: To explore the medication rules of traditional Chinese medicine (TCM) and mechanism of action of hub herb pairs for treating insomnia.

Methods: Totally 104 prescriptions were statistically analyzed. The association rule algorithm was applied to mine the hub herb pairs.

View Article and Find Full Text PDF

Identifying the role of cellulase gene upon the infection of subsp. in citrus.

Mol Breed

January 2025

Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China.

Unlabelled: Citrus canker is a devastating disease caused by subsp. (), which secretes the effector PthA4 into host plants to trigger transcription of the susceptibility gene , resulting in pustule formation. However, the molecular mechanism underlying CsLOB1-mediated susceptibility to remains elusive.

View Article and Find Full Text PDF

Design, Synthesis, and Antibacterial Activity of Novel Sulfone Derivatives Containing a 1,2,4-Triazolo[4,3-]Pyridine Moiety.

J Agric Food Chem

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.

To develop antibacterial agents with a novel mechanism of action, a series of sulfone compounds containing a 1,2,4-triazolo[4,3-]pyridine were designed and synthesized by progressive molecular structure optimization. The antibacterial activities of some derivatives against the four plant pathogens (), (), (), and () were evaluated. Among them, compound demonstrated significant antibacterial activities against , , and , with EC values of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!