The sensorimotor cortical system undergoes structural and functional changes across its lifespan. Some of these changes are physiological and parallel the normal aging process, while others might represent pathophysiological mechanisms underlying neurodegenerative disorders. In the last years, the study of possible age-related modifications in brain sensorimotor functional characteristics has been the focus of several research projects. Here we have used the transcranial magnetic stimulation (TMS)-electroencephalography (EEG) navigated co-registration to investigate the influence of physiological aging on the excitability and connectivity of the human sensorimotor cortical system. To this end, we compared the TMS-evoked EEG potentials (TEPs) collected after stimulating the dominant primary motor cortex (M1) in healthy young subjects (mean age 24.5years) with those collected in healthy older adults (mean age 67.6years). We have shown that, after stimulation of the left motor cortex, TEPs are significantly affected by physiological aging. This phenomenon has a clear spatio-temporal specificity and we speculate that normal aging per se leads to some changes in the excitability of specific cortical neural assemblies whereas other alterations could reflect compensatory mechanisms to such changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2017.06.014 | DOI Listing |
J Magn Reson
December 2024
Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France. Electronic address:
The two-dimensional (2D) refocused INADEQUATE NMR experiment, which correlates double-quantum (DQ) and single-quantum (SQ) coherences, is widely used to probe the chemical connectivities in solids. Nevertheless, the multiplets along the F dimension reduce the resolution and sensitivity of this experiment. The Composite-Refocusing (CR) technique with two excitation pulses has been proposed to suppress these multiplets in 2D INADEQUATE spectra of liquids.
View Article and Find Full Text PDFElife
December 2024
Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Neural diversity can expand the encoding capacity of a circuitry. A striking example of diverse structure and function is presented by the afferent synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in the cochlea. Presynaptic active zones at the pillar IHC side activate at lower IHC potentials than those of the modiolar side that have more presynaptic Ca channels.
View Article and Find Full Text PDFBrain Stimul
December 2024
Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany; Cognitive and Biological Psychology, Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig 04109, Germany.
The simultaneous combination of TMS with fMRI has emerged as a promising means to investigate the direct interaction between stimulation-induced changes at the behavioral and neural activity level. This enables the investigation of whole brain neurobehavioral interactions underlying cognitive disruption or facilitation. Yet to date, the literature on interleaved TMS-fMRI in cognitive neuroscience is sparse and neuromodulatory patterns of different TMS protocols are still poorly understood.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Zellescher Weg 19, 01062 Dresden, Germany.
Stable ^{205}Tl ions have the lowest known energy threshold for capturing electron neutrinos (ν_{e}) of E_{ν_{e}}≥50.6 keV. The Lorandite Experiment (LOREX), proposed in the 1980s, aims at obtaining the longtime averaged solar neutrino flux by utilizing natural deposits of Tl-bearing lorandite ores.
View Article and Find Full Text PDFAutism spectrum disorders (ASD) affects 1 in 36 children and is characterized by repetitive behaviors and difficulties in social interactions and social communication. The etiology of ASD is extremely heterogeneous, with a large number of ASD cases that are of unknown or complex etiology, which suggests the potential contribution of epigenetic risk factors. In particular, epidemiological and animal model studies suggest that inflammation during pregnancy could lead to an increased risk of ASD in the offspring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!