Dominant mutations in STIM1 are a cause of three allelic conditions: tubular aggregate myopathy, Stormorken syndrome (a complex phenotype including myopathy, hyposplenism, hypocalcaemia and bleeding diathesis), and a platelet dysfunction disorder, York platelet syndrome. Previous reports have suggested a genotype-phenotype correlation with mutations in the N-terminal EF-hand domain associated with tubular aggregate myopathy, and a common mutation at p.R304W in a coiled coil domain associated with Stormorken syndrome. In this study individuals with STIM1 variants were identified by exome sequencing or STIM1 direct sequencing, and assessed for neuromuscular, haematological and biochemical evidence of the allelic disorders of STIM1. STIM1 mutations were investigated by fibroblast calcium imaging and 3D modelling. Six individuals with STIM1 mutations, including two novel mutations (c.262A>G (p.S88G) and c.911G>A (p.R304Q)), were identified. Extra-neuromuscular symptoms including thrombocytopenia, platelet dysfunction, hypocalcaemia or hyposplenism were present in 5/6 patients with mutations in both the EF-hand and CC domains. 3/6 patients had psychiatric disorders, not previously reported in STIM1 disease. Review of published STIM1 patients (n = 49) confirmed that neuromuscular symptoms are present in most patients. We conclude that the phenotype associated with activating STIM1 mutations frequently includes extra-neuromuscular features such as hypocalcaemia, hypo-/asplenia and platelet dysfunction regardless of mutation domain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nmd.2017.05.002DOI Listing

Publication Analysis

Top Keywords

stim1 mutations
16
platelet dysfunction
12
stim1
10
mutations
8
coiled coil
8
ef-hand domains
8
tubular aggregate
8
aggregate myopathy
8
stormorken syndrome
8
domain associated
8

Similar Publications

Hippocampal dendritic spines store-operated calcium entry and endoplasmic reticulum content is dynamic microtubule dependent.

Sci Rep

January 2025

Laboratory of Biomedical Imaging and Data Analysis, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, St. Petersburg, Russia, 194021.

One of the mechanisms of calcium signalling in neurons is store-operated calcium entry (SOCE), which is activated when the calcium concentration in the smooth endoplasmic reticulum (ER) decreases and its protein-calcium sensor STIM (stromal interacting molecule) relocate to the endoplasmic reticulum and plasma membrane junctions, forms clusters and induces calcium entry. In electrically non-excitable cells, STIM1 is coupled with the positive end of a tubulin microtubule through interaction with EB1 (end-binding) protein, which controls its oligomerization, SOCE and participates in ER movement. STIM2 homologue, which is specific for mature hippocampal dendritic spines, is known to interact with EB3 protein, however, not much is known about the role of this interaction in STIM2 clustering or ER trafficking in neurons.

View Article and Find Full Text PDF

STIM1 and lipid interactions at ER-PM contact sites.

Am J Physiol Cell Physiol

January 2025

Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.

Store-operated calcium (Ca) entry (SOCE) represents a major route of Ca permeation across the plasma membrane (PM) in nonexcitable cells, which plays an indispensable role in maintaining intracellular Ca homeostasis. This process is orchestrated through the dynamic coupling between the endoplasmic reticulum (ER)-localized Ca sensor stromal interaction molecule 1 (STIM1) and the PM-resident ORAI1 channel. Upon depletion of ER Ca stores, STIM1 undergoes conformational rearrangements and oligomerization, leading to the translocation of activated STIM1 toward the PM.

View Article and Find Full Text PDF

Calcium Homeostasis Is Involved in the Modulation of Gene Expression by MSL2 in Imbalanced Genomes.

Cells

November 2024

Key Laboratory of Cell Proliferation and Regulatory Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China.

Aneuploidy is highly detrimental to organisms due to genomic imbalance. However, the influence of parental unbalanced genome conditions on gene expression of their offspring remains unclear, particularly in animals. To further explore the molecular regulatory mechanisms, we firstly analyzed the expression patterns of aneuploid offspring from different parents with unbalanced genomes via reciprocal crosses and studied the potential functions of male-specific lethal 2 (MSL2) in this process.

View Article and Find Full Text PDF

A Gain-of-Function Mutation in the Ca Channel ORAI1 Causes Stormorken Syndrome with Tubular Aggregates in Mice.

Cells

November 2024

Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France.

Store-operated Ca entry (SOCE) controls Ca homeostasis and mediates multiple Ca-dependent signaling pathways and cellular processes. It relies on the concerted activity of the reticular Ca sensor STIM1 and the plasma membrane Ca channel ORAI1. STIM1 and ORAI1 gain-of-function (GoF) mutations induce SOCE overactivity and excessive Ca influx, leading to tubular aggregate myopathy (TAM) and Stormorken syndrome (STRMK), two overlapping disorders characterized by muscle weakness and a variable occurrence of multi-systemic anomalies affecting spleen, skin, and platelets.

View Article and Find Full Text PDF

Dominant negative variants in ITPR3 impair T cell Ca2+ dynamics causing combined immunodeficiency.

J Exp Med

January 2025

Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK.

The importance of calcium (Ca2+) as a second messenger in T cell signaling is exemplified by genetic deficiencies of STIM1 and ORAI1, which abolish store-operated Ca2+ entry (SOCE) resulting in combined immunodeficiency (CID). We report five unrelated patients with de novo missense variants in ITPR3, encoding a subunit of the inositol 1,4,5-trisphosphate receptor (IP3R), which forms a Ca2+ channel in the endoplasmic reticulum (ER) membrane responsible for the release of ER Ca2+ required to trigger SOCE, and for Ca2+ transfer to other organelles. The patients presented with CID, abnormal T cell Ca2+ homeostasis, incompletely penetrant ectodermal dysplasia, and multisystem disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!