3-NP-induced Huntington's-like disease impairs Nrf2 activation without loss of cardiac function in aged rats.

Exp Gerontol

Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico. Electronic address:

Published: October 2017

Cardiovascular diseases (CVDs) are one of the leading causes of death in patients over 60years with Huntington's disease (HD). Here, we investigated if age-related oxidative stress (OS) is a relevant factor to develop cardiac damage in an in vivo model of striatal neurodegeneration induced by 3-nitropropionic acid (3-NP). We also evaluated the potential effect of tert-butylhydroquinone (tBHQ) to increase the Nrf2-regulated antioxidant response in hearts from adult and aged rats intoxicated with 3-NP. Our results showed that 3-NP-treatment did not induce cardiac dysfunction, neither in adult nor in aged rats. However, at the cellular level, adult animals showed higher susceptibility to 3-NP-induced damage than aged rats, which suggest that chronic oxidative stress ongoing during aging might have induced an hormetic response that probably prevented from further 3-NP damage. We also found that the oxidative unbalance concurs with unresponsiveness of the Nrf2-mediated antioxidant response in old animals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2017.06.009DOI Listing

Publication Analysis

Top Keywords

aged rats
16
oxidative stress
8
antioxidant response
8
adult aged
8
3-np-induced huntington's-like
4
huntington's-like disease
4
disease impairs
4
impairs nrf2
4
nrf2 activation
4
activation loss
4

Similar Publications

Background: Cardiac aging is associated with myocardial remodeling and reduced angiogenesis. Counteracting these changes with natural products is a preventive strategy with great potential. The aim of this study was to evaluate the effect of fruit juice (AMJ) supplementation on age-related myocardial remodeling in aged rat hearts.

View Article and Find Full Text PDF

Effect of Combining Exercise with Adipose-Derived Mesenchymal Stem Cells in Muscle Atrophy Model of Sarcopenia.

Int J Mol Sci

January 2025

Department of Physical and Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea.

Deterioration in muscle mass, strength, and physical performance due to conditions such as sarcopenia can affect daily activities and quality of life in the elderly. Exercise and mesenchymal stem cells (MSCs) are potential therapies for sarcopenia. This study evaluates the combined effects of exercise and adipose-derived MSCs (ADMSCs) in aged rats with sarcopenia.

View Article and Find Full Text PDF

Exploring the Mechanisms of Iron Overload-Induced Liver Injury in Rats Based on Transcriptomics and Proteomics.

Biology (Basel)

January 2025

Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.

Iron is a trace element that is indispensable for the growth and development of animals. Excessive iron supplementation may lead to iron overload and elevated reactive oxygen species (ROS) production in animals, causing cellular damage. Nevertheless, the precise mechanism by which iron overload causes cell injury remains to be fully elucidated.

View Article and Find Full Text PDF

Background: Metabolism alteration is a common complication of rheumatic arthritis (RA). This work investigated the reason behind RA-caused triglyceride (TG) changes.

Methods: Fresh RA patients' whole blood was transfused into NOD-SCID mice.

View Article and Find Full Text PDF

Targeting NF-kappaB-inducing kinase shapes B-cell homeostasis in myasthenia gravis.

J Neuroinflammation

January 2025

Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China.

Background: B cell immune dysregulation plays a critical role in myasthenia gravis (MG). However, targeted B-cell therapy such as rituximab may result in long-term peripheral B cell clearance and allow for the survival of plasma cells, contributing to frequent infections and relapses. Therefore, we aimed to identify potential novel therapeutic targets that preserve part of B cell function while inhibiting antibody-secreting cells (ASCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!