Structural parameters of the proximal femur evaluate the strength of the bone and its susceptibility to fracture. These parameters are computed from dual-energy X-ray absorptiometry (DXA) or from quantitative computed tomography (QCT). The 3-dimensional (3D)-DXA software solution provides 3D models of the proximal femur shape and bone density from anteroposterior DXA scans. In this paper, we present and evaluate a new approach to compute structural parameters using 3D-DXA software. A cohort of 60 study subjects (60.9 ± 14.7 yr) with DXA and QCT examinations was collected. 3D femoral models obtained by QCT and 3D-DXA software were aligned using rigid registration techniques for comparison purposes. Geometric, cross-sectional, and volumetric structural parameters were computed at the narrow neck, intertrochanteric, and lower shaft regions for both QCT and 3D-DXA models. The accuracy of 3D-DXA structural parameters was evaluated in comparison with QCT. Correlation coefficients (r) between geometric parameters computed by QCT and 3D-DXA software were 0.86 for the femoral neck axis length and 0.71 for the femoral neck shaft angle. Correlation coefficients ranged from 0.86 to 0.96 for the cross-sectional parameters and from 0.84 to 0.97 for the volumetric structural parameters. Our study demonstrated that accurate estimates of structural parameters for the femur can be obtained from 3D-DXA models. This provides clinicians with 3D indexes related to the femoral strength from routine anteroposterior DXA scans, which could potentially improve osteoporosis management and fracture prevention.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jocd.2017.05.002DOI Listing

Publication Analysis

Top Keywords

structural parameters
28
3d-dxa software
16
proximal femur
12
parameters computed
12
qct 3d-dxa
12
parameters
9
parameters proximal
8
dual-energy x-ray
8
x-ray absorptiometry
8
quantitative computed
8

Similar Publications

We build and study an individual based model of the telomere length's evolution in a population across multiple generations. This model is a continuous time typed branching process, where the type of an individual includes its gamete mean telomere length and its age. We study its Malthusian's behaviour and provide numerical simulations to understand the influence of biologically relevant parameters.

View Article and Find Full Text PDF

In this study, biopolymer composites based on chitosan (CS) with enhanced optical properties were functionalized using Manganese metal complexes and black tea solution dyes. The results indicate that CS with Mn-complexes can produce polymer hybrids with high absorption, high refractive index and controlled optical band gaps, with a significant reduction from 6.24 eV to 1.

View Article and Find Full Text PDF

Magnetic nanoparticles of Nd2Fe14B prepared by ethanol-assisted wet ball milling technique.

Sci Rep

January 2025

Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

The magnetic material Nd2Fe14B is one of the strongest magnetic materials found in nature. The demand for the production of these nanoparticles is significantly high due to their exceptional properties. The aim of the present study is to synthesize magnetic nanoparticles of Nd2Fe14B using ethanol in the wet ball milling technique (WBMT).

View Article and Find Full Text PDF

Metasurface higher-order poincaré sphere polarization detection clock.

Light Sci Appl

January 2025

National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, 410082, Changsha, China.

Accurately and swiftly characterizing the state of polarization (SoP) of complex structured light is crucial in the realms of classical and quantum optics. Conventional strategies for detecting SoP, which typically involves a sequence of cascaded optical elements, are bulky, complex, and run counter to miniaturization and integration. While metasurface-enabled polarimetry has emerged to overcome these limitations, its functionality predominantly remains confined to identifying SoP within the standard Poincaré sphere framework.

View Article and Find Full Text PDF

Objective: In recent decades, many physicians have chosen to opt out of Medicare, allowing them to set their own pricing models for their patients. Characterization of Medicare opt-outs has not been thoroughly studied in any surgical specialty, including Neurosurgery. Our study characterizes the factors that may influence a neurosurgeon's decision to opt out of Medicare acceptance and contextualizes them both within the field and across various surgical specialties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!