Diosmetin protects against ischemia/reperfusion-induced acute kidney injury in mice.

J Surg Res

Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, Hubei, China. Electronic address:

Published: June 2017

Background: Renal ischemia/reperfusion (I/R)-induced acute kidney injury remains to be a troublesome condition in clinical practice. Although the exact molecular mechanisms underlying renal I/R injury are incompletely understood, the deleterious progress of renal I/R injury involves inflammation, apoptosis, and oxidative stress. Diosmetin is a member of the flavonoid glycosides family, which suppresses the inflammatory response and cellular apoptosis and enhances antioxidant activity. The purpose of this study was to investigate the protective effect of diosmetin on I/R-induced renal injury in mice.

Methods: Thirty BALB/c mice were randomly divided into five groups. Four groups of mice received diosmetin (0.25, 0.5, and 1 mg/kg) or vehicle (I/R group) before ischemia. Another group received vehicle without ischemia to serve as a negative control (sham-operated group). Twenty-four hours after reperfusion, serum and renal tissues were harvested to evaluate renal function and histopathologic features. In addition, the expression of inflammation-related proteins, apoptotic molecules, and antioxidant enzymes was analyzed.

Results: Compared with sham mice, the I/R group significantly exacerbated renal function and renal tube architecture and increased the inflammatory response and renal tubule apoptosis. Nevertheless, pretreatment with diosmetin reversed these changes. In addition, diosmetin treatment resulted in a marked increase in antioxidant protein expression compared with I/R mice.

Conclusions: The renoprotective effects of diosmetin involved suppression of the nuclear factor-κB and mitochondrial apoptosis pathways, as well as activation of the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 pathway. Diosmetin has significant potential as a therapeutic intervention to ameliorate renal injury after renal I/R.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jss.2017.02.067DOI Listing

Publication Analysis

Top Keywords

renal i/r
12
renal
11
diosmetin
8
acute kidney
8
kidney injury
8
i/r injury
8
inflammatory response
8
renal injury
8
i/r group
8
renal function
8

Similar Publications

A growing body of evidence suggests the involvement of long noncoding ribose nucleic acids (lncRNAs) in acute kidney injury (AKI). This study focused on the mechanistic role of lncRNA small nucleolar RNA host gene 12 (SNHG12) in ischemia/reperfusion (I/R)-mediated AKI. A model of hypoxia/reoxygenation (H/R) was created using human kidney cells (HK-2).

View Article and Find Full Text PDF

Podocytes are essential to maintain the normal filtration function of glomerular basement membrane, which could be injured by ischemia-reperfusion. As complicated function of autophagy in terminal differentiated podocytes, autophagy dysfunction might contribute to I/R induced renal dysfunction following glomerular filtration membrane (GFM) injuries. Meanwhile, apelin-13, an endogenous polypeptide, has been proved to be effective in regulating autophagy and apoptosis in podocytes.

View Article and Find Full Text PDF

Sufentanil attenuates renal ischemia-reperfusion injury via the lncRNA KCNQ1OT1/miR-211-5p/HMGB1 axis.

Pathol Res Pract

December 2024

Department of Anesthesiology, Nantong Haimen People's Hospital, Nantong 226100, China. Electronic address:

Inflammation is one of the most significant pathological changes in ischemia-reperfusion injury (IRI). Sufentanil has protective effects on IRI by reducing inflammatory responses. This study aimed to investigate the protective effects and possible mechanisms of sufentanil on renal IRI (RIRI).

View Article and Find Full Text PDF

Ischemia-reperfusion (I/R) injury is a process in which impaired perfusion is restored by restoring blood flow and tissue recirculation. Nanomedicine uses cutting-edge technologies that emerge from interdisciplinary influences. In the literature, there are very few in vivo and in vitro studies on how cerium oxide (CeO) affects systemic anti-inflammatory response and inflammation.

View Article and Find Full Text PDF

Background: Fangji Huangqi Decoction (FJHQD), a famous Traditional Chinese Medicine (TCM) formula, has been widely applied in improving renal function. However, the interaction of bioactives from FJHQD with the targets involved in acute renal injury (AKI) has not been elucidated yet.

Purpose: A network pharmacology-based approach combined with molecular docking and in vitro and in vivo validation was performed to determine the bioactives, key targets, and potential pharmacological mechanism of FJHQD against AKI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!