Background: Although male gender, aging, hypertension, dyslipidemia, and smoking are common risk factors for abdominal aortic aneurysm, diabetes mellitus is an independent negative risk factor. In aneurysm tissue, matrix metalloproteinases (MMPs) expressed by activated macrophages degrades extracellular matrix proteins. In our previous experimental study, we demonstrated that the aneurysmal formation and macrophage activity were suppressed by inhibiting mimicking hyperglycemia (HG) through upregulation of glucose-sensing nuclear receptor, Nr1h2. Here in this study, we focused on the role of HG-induced altered glucose uptake on macrophage activation.
Methods: RAW264.7 murine macrophage cells were pretreated in cultures containing HG (HG group, 15.5 mM) or normal glucose (NG) concentrations (NG group, 5.5 mM) for 7 d. The culture medium was then changed in both groups to NG conditions, and the cells were stimulated with recombinant murine soluble receptor activator of NF-κB ligand (sRANKL). Macrophage activation was confirmed by tartrate-resistant acid phosphatase (TRAP) staining.
Results: Compared with the NG group, MMP-9 expression in the HG group was significantly suppressed. Glucose uptake was increased in the NG group but not in the HG group during macrophage activation. To determine the mechanism of activation, we studied the expression and distribution of glucose transporters (Gluts) in the macrophages. Although Glut expression was unaffected by glucose pretreatment, membrane translocation of Glut-1 was significantly enhanced in macrophages in the NG group but not in the HG group during activation. Insulin receptor and insulin receptor substrate-1 (IRS-1) messenger RNA, known stimulate to membrane translocation of Gluts, were both decreased by the HG condition but not by the NG condition.
Conclusions: HG pretreatment suppressed the macrophage activation. sRANKL increased macrophage glucose uptake at NG concentrations, which was impaired by HG pretreatment through the inhibition of Glut1 membrane translocation and the insulin receptor and IRS-1 gene transcription. These data suggest that HG suppressed macrophage activation, through attenuation of glucose uptake via the suppression of the membrane translocation of Glut1 and insulin signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jss.2017.02.009 | DOI Listing |
Nat Commun
January 2025
Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
How macrophages in the tissue environment integrate multiple stimuli depends on the genetic background of the host, but this is still poorly understood. We investigate IL-4 activation of male C57BL/6 and BALB/c strain specific in vivo tissue-resident macrophages (TRMs) from the peritoneal cavity. C57BL/6 TRMs are more transcriptionally responsive to IL-4 stimulation, with induced genes associated with more super enhancers, induced enhancers, and topologically associating domains (TAD) boundaries.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:
Background: Myocarditis tends to lead to a poor prognosis, but there are no satisfactory preventive or therapeutic strategies. Erianin, a natural benzene compound, has been found to have antioxidant and anti-inflammatory effects. However, the effects of erianin on myocarditis remain unclear.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Immunology lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India. Electronic address:
Introduction: Leishmaniasis is a tropical parasitic disease caused by the protozoan Leishmania which remains a significant global health concern with diverse clinical manifestations. Transmitted through the bite of an infected sandfly, its progression depends on the interplay between the host immune response and the parasite. The disease outcome is linked to macrophage polarisation into M1 and M2 phenotypes.
View Article and Find Full Text PDFJ Control Release
January 2025
Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan. Electronic address:
Hepatocellular carcinoma (HCC) is a leading cause of cancer death that has limited treatment options for advanced stages. Although PD-1 inhibitors such as nivolumab and pembrolizumab have been approved for advanced HCC treatment, their effectiveness is often hampered by the immunosuppressive tumor microenvironment (TME), which is due to hypoxia-driven CXCL12/CXCR4 axis activation. In this study, we developed 807-NPs, lipid-coated tannic acid (TA) nanoparticles that encapsulate BPRCX807, a potent CXCR4 antagonist to target HCC.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China. Electronic address:
Pyroptosis and macrophage pro-inflammatory activation play an important role in hepatocellular carcinoma (HCC) progression. However, the specific regulatory mechanisms remain unclear. We identified pyroptosis-related differentially expressed genes (DEGs) based on the GSE4183 and GSE44861 datasets as well as EVenn database.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!