Purpose: Cranioplasty for recovering skull defects carries the risk for a number of complications. Various materials are used, including autologous bone graft, metallic materials, and non-metallic materials, each of which has advantages and disadvantages. If the use of autologous bone is not feasible, those artificial materials also have constraints in the case of complex anatomy and/or irregular defects.

Material And Methods: This study used metal 3D-printing technology to overcome these existing drawbacks and analyze the clinical and mechanical performance requirements. To find an optimal structure that satisfied the structural and mechanical stability requirements, we evaluated biomechanical stability using finite element analysis (FEA) and mechanical testing. To ensure clinical applicability, the model was subjected to histological evaluation. Each specimen was implanted in the femur of a rabbit and was evaluated using histological measurements and push-out test.

Results And Conclusion: We believe that our data will provide the basis for future applications of a variety of unit structures and further clinical trials and research, as well as the direction for the study of other patient-specific implants.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00381-017-3486-yDOI Listing

Publication Analysis

Top Keywords

3d-printing technology
8
autologous bone
8
exploring optimal
4
optimal structural
4
structural design
4
design 3d-printing
4
technology cranial
4
cranial reconstruction
4
reconstruction biomechanical
4
biomechanical histological
4

Similar Publications

Statement Of Problem: Different factors affect 3-dimensionally (3D) printed resin products. However, evidence on the effect of the print orientation on resin dental devices is lacking.

Purpose: The purpose of this systematic review and meta-analysis was to assess the impact of print orientation on the properties and accuracy of 3D printed implant surgical guides, occlusal devices, clear orthodontic retainers, and aligners.

View Article and Find Full Text PDF

Advances in 3D printing combined with tissue engineering for nerve regeneration and repair.

J Nanobiotechnology

January 2025

Department of Neurology, Affiliated Hospital of Jiujiang University, No. 57 East Xunyang Road, Jiujiang, Jiangxi, 332005, China.

The repair of nerve damage has long posed a challenge owing to limited self-repair capacity and the highly differentiated nature of nerves. While new therapeutic and pharmacologic interventions have emerged in neurology, their regenerative efficacy remains limited. Tissue engineering offers a promising avenue for overcoming the limitations of conventional treatments and increasing the outcomes of regenerative repair.

View Article and Find Full Text PDF

Synthesis and characterization of dextran palmitate for extrusion 3D printing.

Int J Biol Macromol

January 2025

KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), Celestijnenlaan 200F, 3001 Leuven, Belgium. Electronic address:

The fabrication of objects with complex shape and geometry has been greatly facilitated with the advancements in additive manufacturing. While synthetic polymers like ABS and PLA have found widespread use in extrusion 3D printing, other biobased thermoplastics that are both biodegradable and biocompatible could offer strategic advantages over traditional synthetic materials. In this work dextran of low (20 kDa) and medium (40 kDa) molecular weight (MW) was modified with palmitic acid to obtain meltable polymers for extrusion 3D printing/fused deposition modeling additive manufacturing.

View Article and Find Full Text PDF

3D printed edible electronics: Components, fabrication approaches and applications.

Biosens Bioelectron

December 2024

Computational Modeling and Nanoscale Processing Unit, Department of Food Process Engineering, National Institute of Food Technology Entrepreneurship and Management, Thanjavur (NIFTEM-T), Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India. Electronic address:

A recently minted field of 3D-printed edible electronics (EEs) represents a cutting-edge convergence of edible electronic devices and 3D printing technology. This review presents a comprehensive view of this emerging discipline, which has gathered significant scientific attention for its potential to create a safe, environmentally friendly, economical, and naturally degraded inside the human body. EEs have the potential to be used as medical and health devices to monitor physiological conditions and possibly treat diseases.

View Article and Find Full Text PDF

This study aimed to develop and validate a cost-effective, customizable patient-specific phantom for simulating external ventricular drain placement, combining image segmentation, 3-D printing and molding techniques. Two variations of the phantom were created based on patient MRI data, integrating a realistic skin layer with anatomical landmarks, a 3-D printed skull, an agarose polysaccharide gel brain, and a ventricular cavity. To validate the phantom, 15 neurosurgeons, residents, and physician assistants performed 30 EVD placements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!