Fast Projection Matching for X-ray Tomography.

Sci Rep

Collection Management Department, National Taiwan Museum, 10047, Taipei, Taiwan.

Published: June 2017

X-ray 3D tomographic techniques are powerful tools for investigating the morphology and internal structures of specimens. A common strategy for obtaining 3D tomography is to capture a series of 2D projections from different X-ray illumination angles of specimens mounted on a finely calibrated rotational stage. However, the reconstruction quality of 3D tomography relies on the precision and stability of the rotational stage, i.e. the accurate alignment of the 2D projections in the correct three-dimensional positions. This is a crucial problem for nano-tomographic techniques due to the non-negligible mechanical imperfection of the rotational stages at the nanometer level which significantly degrades the spatial resolution of reconstructed 3-D tomography. Even when using an X-ray micro-CT with a highly stabilized rotational stage, thermal effects caused by the CT system are not negligible and may cause sample drift. Here, we propose a markerless image auto-alignment algorithm based on an iterative method. This algorithm reduces the traditional projection matching method into two simplified matching problems and it is much faster and more reliable than traditional methods. This algorithm can greatly decrease hardware requirements for both nano-tomography and data processing and can be easily applied to other tomographic techniques, such as X-ray micro-CT and electron tomography.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5473817PMC
http://dx.doi.org/10.1038/s41598-017-04020-0DOI Listing

Publication Analysis

Top Keywords

rotational stage
12
projection matching
8
tomography x-ray
8
tomographic techniques
8
x-ray micro-ct
8
x-ray
5
tomography
5
fast projection
4
matching x-ray
4
x-ray tomography
4

Similar Publications

The incorporation of rice straw (RS) and Chinese milk vetch (CMV) with reduced chemical fertilizers (CFs) is a viable solution to reduce the dependency on CF. However, limited research has been conducted to investigate the impact of CMV and RS with reduced CF on rice production. A field trial was conducted from 2018 to 2021 with six treatments: CK (no fertilizer), F100 (100% NPK fertilizer (CF)), MSF100 (100% CF+CMV and RS incorporation), MSF80 (80% CF+CMV+RS), MSF60 (60% CF+CMV+RS), and MSF40 (40% CF+CMV+RS).

View Article and Find Full Text PDF

A Large-Scale Agricultural Land Classification Method Based on Synergistic Integration of Time Series Red-Edge Vegetation Index and Phenological Features.

Sensors (Basel)

January 2025

National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China.

Agricultural land classification plays a pivotal role in food security and ecological sustainability, yet achieving accurate large-scale mapping remains challenging. This study presents methodological innovations through a multi-level feature enhancement framework that transcends traditional time series analysis. Using Shandong Province, northern China's agricultural heartland, as a case study, we first established a foundation with time series red-edge vegetation indices (REVI) from Sentinel-2 imagery, uniquely combining the normalized difference red edge index (NDRE) and plant senescence reflectance index (PSRI).

View Article and Find Full Text PDF

: Periprosthetic joint infection (PJI) after shoulder arthroplasty is often treated with a two-stage approach, but the data on the mid- to long-term outcomes remain scarce. This study aimed to evaluate the clinical outcomes of two-stage revision arthroplasty for shoulder PJI with a minimum follow-up of five years. : This retrospective study identified 59 shoulders in 58 patients who underwent the first stage of a two-stage revision arthroplasty for shoulder PJI at our institution between 2007 and 2018.

View Article and Find Full Text PDF

Effect of Clamped Member Material and Thickness on Bolt Self-Loosening Under Transverse Loads.

Materials (Basel)

January 2025

Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Ouest, Montreal, QC H3C 1K3, Canada.

Bolted joints, prevalent in industrial applications for component fastening, are susceptible to self-loosening-a critical issue resulting in a gradual reduction in clamping force. Gaining insight into the underlying mechanisms of self-loosening is crucial. While prior research has largely focused on evaluating component stiffness, limited attention has been given to its impact on the self-loosening behavior of bolted joints under transverse cyclic loading.

View Article and Find Full Text PDF

Goldfish (), subjected to millennia of artificial selection and breeding, have diversified into numerous ornamental varieties, such as the celestial-eye (CE) goldfish, noted for its unique dorsal eye rotation. Previous studies have primarily focused on anatomical modifications in CE goldfish eyes, yet the molecular underpinnings of their distinctive eye orientation remain poorly understood. This study employed high-throughput transcriptome and proteome sequencing on 110-day-old full-sibling CE goldfish, which displayed either anterior or upward eye rotations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!