Nowadays, biosensor technologies which can detect various contaminants in water quickly and cost-effectively are in great demand. Herein, we report an integrated channel waveguide-based fluorescent immunosensor with the ability to detect a maximum of 32 contaminants rapidly and simultaneously. In particular, we use waveguide tapers to improve the efficiency of excitation and collection of fluorescent signals in the presence of fluorophore photobleaching in a solid surface bioassay. Under the optimized waveguide geometry, this is the first demonstration of using such a type of waveguide immunosensor for the detection of microcystin-LR (MC-LR) in lake water. The waveguide chip was activated by (3-Mercaptopropyl) trimethoxysilane/N-(4-maleimidobutyryloxy) succinimide (MTS/GMBS) for immobilization of BSA-MC-LR conjugate, which was confirmed to have uniform monolayer distribution by atomic force microscopy. All real lake samples, even those containing MC-LR in the sub-microgram per liter range (e.g. 0.5 μg/L), could be determined by the immunosensor with recovery rates between 84% and 108%, confirming its application potential in the measurement of MC-LR in real water samples.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5473886 | PMC |
http://dx.doi.org/10.1038/s41598-017-03939-8 | DOI Listing |
Biomed Opt Express
August 2023
Division of Biological Physics, Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden.
Recent innovations in microscopy techniques are paving the way for label-free studies of single nanoscopic biological entities such as viruses, lipid-nanoparticle drug carriers, and even proteins. One such technique is waveguide evanescent-field microscopy, which offers a relatively simple, yet sensitive, way of achieving label-free light scattering-based imaging of nanoparticles on surfaces. Herein, we extend the application of this technique by incorporating microfluidic liquid control and adapting the design for use with inverted microscopes by fabricating a waveguide on a transparent substrate.
View Article and Find Full Text PDFGiant (Oxf)
June 2023
Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843.
Rapid detection of unlabeled SARS-CoV-2 genetic target was demonstrated using a competitive displacement hybridization assay made by a nanostructured anodized alumina oxide (AAO) membrane. The assay applied the toehold-mediated strand displacement reaction. The nanoporous surface of the membrane was functionalized with a complementary pair consisting of Cy3-labeled probe and quencher-labeled nucleic acids through a chemical immobilization process.
View Article and Find Full Text PDFAn ultracompact fiber inclinometer based on a bubble controlled by Marangoni force is proposed in this Letter. By coupling a 980-nm laser, the bubble can suspend in a quantum dots (QDs) liquid-core waveguide (LCW) due to the Marangoni effect. Under the excitation of a 405-nm laser, QDs LCW exhibit green emissions centered at 523 nm.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2022
Departamento de Física de Materiales and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
Plasmonic waveguides have been shown to be a promising approach to confine and transport electromagnetic energy beyond the diffraction limit. However, ohmic losses generally prevent their integration at micrometric or millimetric scales. Here, we present a gain-compensated plasmonic waveguide based on the integration of linear chains of Ag nanoparticles on an optically active Nd-doped solid-state gain medium.
View Article and Find Full Text PDFColor balance is a critical concept in the application of functional transparent polymers from a customer's standpoint. In this study, multiple polar and non-polar fluorescent dyes are embedded simultaneously for the first time in a polydimethylsiloxane (PDMS) polymer matrix. Five dyes successfully coexist with the optimum blending ratio.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!