Aberrant activation of the Hedgehog (Hh) signaling pathway drives the tumorigenesis of multiple cancers. In this study, we screened a panel of deubiquitinases that may regulate the Hh pathway. We find that deubiquitinase USP48 activates Gli-dependent transcription by stabilizing Gli1 protein. Mechanistically, USP48 interacts with Gli1 and cleaves its ubiquitin off directly. In glioblastoma cells, knockdown of USP48 inhibits cell proliferation and the expression of Gli1's downstream targets, which leads to repressed glioblastoma tumorigenesis. Importantly, USP48's effect on cell proliferation and tumorigenesis depends to some extent on Gli1. In addition, we find that the Sonic Hedgehog (SHH) pathway induces USP48 expression through Gli1-mediated transcriptional activation, which forms thus a positive feedback loop to regulate Hh signaling. In human glioblastoma specimens, the expression levels of USP48 and Gli1 proteins are clinically relevant, and high expression of USP48 correlates with glioma malignancy. In summary, our study reveals that the USP48-Gli1 regulatory axis is critical for glioma cell proliferation and glioblastoma tumorigenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5538423PMC
http://dx.doi.org/10.15252/embr.201643124DOI Listing

Publication Analysis

Top Keywords

glioblastoma tumorigenesis
12
cell proliferation
12
deubiquitinase usp48
8
stabilizing gli1
8
usp48
7
glioblastoma
5
tumorigenesis
5
gli1
5
gli1-induced deubiquitinase
4
usp48 aids
4

Similar Publications

Nucleotide-binding oligomerization domain protein 1 (NOD1) is one of the innate immune receptors that has been associated with tumorigenesis and abnormally expressed in various cancers. However, the role of NOD1 in Glioblastoma Multiforme (GBM) has not been investigated. We used the Tumor Immune Estimate Resource (TIMER) database to compare the differential expression of NOD1 in various tumors.

View Article and Find Full Text PDF

: With the rise in prevalence of diagnostic genetic techniques like RNA sequencing and whole exome sequencing (WES), as well as biological treatment regiments for cancer therapy, several genes have been implicated in carcinogenesis. This review aims to update our understanding of the Neurofibromatosis 2 (NF2) gene and its role in the pathogenesis of various cancers. : A comprehensive search of five online databases yielded 43 studies that highlighted the effect of sporadic NF2 mutations on several cancers, including sporadic meningioma, ependymoma, schwannoma, mesothelioma, breast cancer, hepatocellular carcinoma, prostate cancer, glioblastoma, thyroid cancer, and melanoma.

View Article and Find Full Text PDF

Histone methyltransferases (HMTs) and histone demethylases (HDMs) are critical enzymes that regulate chromatin dynamics and gene expression through the addition and removal of methyl groups on histone proteins. HMTs, such as PRC2 and SETD2, are involved in the trimethylation of histone H3 at lysine 27 and lysine 36, influencing gene silencing and activation. Dysregulation of these enzymes often leads to abnormal gene expression and contributes to tumorigenesis.

View Article and Find Full Text PDF

ALKBH5 facilitates tumor progression via an m6A-YTHDC1-dependent mechanism in glioma.

Cancer Lett

January 2025

Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 China. Electronic address:

N-methyladenosine (m6A) methylation, is a well-known epigenetic modification involved in various biological processes, including tumorigenesis. However, the role of AlkB homolog 5 (ALKBH5), a critical component of m6A modification, remains unclear in glioma. This study investigates the function of ALKBH5 in glioma progression and its potential as a therapeutic target.

View Article and Find Full Text PDF

Glioblastoma is an incurable brain malignancy. By the time of clinical diagnosis, these tumours exhibit a degree of genetic and cellular heterogeneity that provides few clues to the mechanisms that initiate and drive gliomagenesis. Here, to explore the early steps in gliomagenesis, we utilized conditional gene deletion and lineage tracing in tumour mouse models, coupled with serial magnetic resonance imaging, to initiate and then closely track tumour formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!