Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Epigenetic alteration plays critical roles in gliomagenesis by regulating gene expression through modifications of Histones and DNA. Trimethylation of H3K9, an essential repressed transcription mark, and one of its methyltransferase, SUV39H1, are implicated in glioma pathogenesis and progression. We find that the protein level of HP1α, a reader of H3K9me3 is elevated in cultured glioma cell lines and glioma tissues. H3K9me3 is also upregulated. Depletion of HP1α and SUV39H1 weakens glioma cell proliferation capacity and results in apoptosis of cells. Furthermore, we find that HP1α and H3K9me3 are enriched in the FAS and PUMA promoters, which suggests that upregulated HP1α and H3K9me3 contribute to cell survival by suppressing apoptotic activators. These data suggests that up-regulated HP1α and H3K9me3 in glioma cells are functionally associated with glioma pathogenesis and progression and may serve as novel biomarkers for diagnostic and therapeutic targeting of brain tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2017.06.056 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!