One of the tasks of current oncology is identification of cancer stem cells and search of therapeutic means capable of their specific inhibition. The paper presents the data on phenotype characteristics of Ehrlich carcinoma cells as convenient and easy-to-follow model of tumor growth. The evidence of cancer stem cells as a part of Ehrlich carcinoma and significance of CD44 and CD44 subpopulations in maintaining the growth of this type of tumor were demonstrated. A high (tenfold) tumorigenic activity of the Ehrlich carcinoma CD44 cells if compared to CD44 cells was proven. In this pair of comparison, the CD44 cells had a higher potential of generating in peritoneal cavity of CD44, CD44CD24, CD44CD24 cell subpopulations, highlighting the presence of cancer stem cells in a pool of CD44 cells.In this study, the ability of synthesized hybrid nanocomplexes, comprising the nanoparticles of rare earth orthovanadates GdYVO:Eu and cholesterol to inhibit the tumor growth and to increase the survival of the animals with tumors was established. A special contribution into tumor-inhibiting effect is made by each of its components. Treatment of Ehrlich carcinoma cells with two-component hybrid complex resulted in maximum reduction in the concentration of the most tumorigenic CD44 cells with simultaneous rise in the number of CD117 cells that decreased an intensity of tumor growth by 74.70 ± 4.38% if compared with the control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472644PMC
http://dx.doi.org/10.1186/s11671-017-2175-9DOI Listing

Publication Analysis

Top Keywords

cancer stem
16
stem cells
16
ehrlich carcinoma
16
cd44 cells
16
tumor growth
12
cells
11
carcinoma cells
8
cd44
8
nanotechniques inactivate
4
cancer
4

Similar Publications

Acute inflammation induces acute megakaryopoiesis with impaired platelet production during fetal hematopoiesis.

Development

January 2025

Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.

Hematopoietic development is tightly regulated by various factors. The role of RNA m6A modification during fetal hematopoiesis, particularly in megakaryopoiesis, remains unclear. Here, we demonstrate that loss of m6A methyltransferase METTL3 induces formation of double-stranded RNAs (dsRNAs) and activates acute inflammation during fetal hematopoiesis.

View Article and Find Full Text PDF

Invasive pulmonary infections are a significant cause of morbidity and mortality in patients with hematological malignancies and hematopoietic stem cell transplantation (HCT) recipients. A delay in identifying a causative agent may result in late initiation of appropriate treatment and adverse clinical outcomes. We examine the diagnostic utility of PCR-based assays in evaluating invasive pulmonary infections from bronchoalveolar lavage (BAL).

View Article and Find Full Text PDF

Tamoxifen (TAM) is employed to treat premenopausal ER-positive breast cancer patients, but TAM resistance is the main reason affecting its efficacy. Thus, addressing TAM resistance is crucial for improving therapeutic outcomes. This study explored the potential role of Tinagl1, a secreted extracellular matrix protein, whose expression is compromised in TAM-resistant MCF-7 breast cancer cells (MCF-7R).

View Article and Find Full Text PDF

Background: SET domain-containing protein 4 (SETD4) is a histone methyltransferase that has been shown to modulate cell proliferation, differentiation, and inflammatory responses by regulating histone H4 trimethylation (H4K20me3). Previous reports have demonstrated its function in the quiescence of cancer stem cells as well as drug resistance in several cancers. A limited number of systematic studies have examined SETD4's role in the tumor microenvironment, pathogenesis, prognosis, and therapeutic response.

View Article and Find Full Text PDF

Exosomes as promising frontier approaches in future cancer therapy.

World J Gastrointest Oncol

January 2025

Department of Automatic Control Engineering, Feng Chia University, Taichung 407, Taiwan.

In this editorial, we will discuss the article by Tang published in the recent issue of the . They explored an innovative approach to enhancing gemcitabine (GEM) delivery and efficacy using human bone marrow mesenchymal stem cells (HU-BMSCs)-derived exosomes. The manufacture of GEM-loaded HU-BMSCs-derived exosomes (Exo-GEM) has been optimized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!