We demonstrate a quantum nanophotonics platform based on germanium-vacancy (GeV) color centers in fiber-coupled diamond nanophotonic waveguides. We show that GeV optical transitions have a high quantum efficiency and are nearly lifetime broadened in such nanophotonic structures. These properties yield an efficient interface between waveguide photons and a single GeV center without the use of a cavity or slow-light waveguide. As a result, a single GeV center reduces waveguide transmission by 18±1% on resonance in a single pass. We use a nanophotonic interferometer to perform homodyne detection of GeV resonance fluorescence. By probing the photon statistics of the output field, we demonstrate that the GeV-waveguide system is nonlinear at the single-photon level.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.118.223603DOI Listing

Publication Analysis

Top Keywords

single gev
8
gev center
8
gev
5
quantum nonlinear
4
nonlinear optics
4
optics germanium-vacancy
4
germanium-vacancy color
4
color center
4
center nanoscale
4
nanoscale diamond
4

Similar Publications

Article Synopsis
  • Researchers investigated how high-intensity laser pulses propagate through a plasma channel by adjusting its length, successfully guiding 500 terawatt pulses over distances of 30 cm in hydrogen plasma.
  • They observed the initial energy transfer involving higher-order modes and a transition to more efficient propagation, noting a depletion of laser energy that generates wakefields.
  • Utilizing 21.3 joules of laser energy for localized electron injection, they achieved electron bunches with nearly monenergetic peaks reaching 9.2 GeV and total charge exceeding 10 GeV.
View Article and Find Full Text PDF

R(3780) Resonance Interpreted as the 1^{3}D_{1}-Wave Dominant State of Charmonium from Precise Measurements of the Cross Section of e^{+}e^{-}→Hadrons.

Phys Rev Lett

December 2024

State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People's Republic of China.

We report the precise measurements of the cross section of e^{+}e^{-}→hadrons at center-of-mass energies from 3.645 to 3.871 GeV.

View Article and Find Full Text PDF
Article Synopsis
  • Engineers have developed genetically modified bacteria (Bacillus subtilis) that can detect TNT in soil, focusing on how they perform over time compared to natural microbes.
  • These engineered microbes are equipped with sensors and memory circuits, allowing them to respond to low concentrations of TNT and maintain that response for over 21 days.
  • The study shows that these microbial sensors not only detect TNT effectively but can also coexist with other microbes, providing an added layer of safety for environmental monitoring.
View Article and Find Full Text PDF

Entanglement is a key feature of quantum mechanics, with applications in fields such as metrology, cryptography, quantum information and quantum computation. It has been observed in a wide variety of systems and length scales, ranging from the microscopic to the macroscopic. However, entanglement remains largely unexplored at the highest accessible energy scales.

View Article and Find Full Text PDF

Guided Mode Evolution and Ionization Injection in Meter-Scale Multi-GeV Laser Wakefield Accelerators.

Phys Rev Lett

July 2024

Institute for Research in Electronics and Applied Physics and Department of Physics, University of Maryland, College Park, Maryland 20742, USA.

We show that multi-GeV laser wakefield electron accelerators in meter-scale, low density hydrodynamic plasma waveguides operate in a new nonlinear propagation regime dominated by sustained beating of lowest order modes of the ponderomotively modified channel; this occurs whether or not the injected pulse is linearly matched to the guide. For a continuously doped gas jet, this emergent mode beating effect leads to axially modulated enhancement of ionization injection and a multi-GeV energy spectrum of multiple quasimonoenergetic peaks; the same process in a locally doped jet produces single multi-GeV peaks with <10% energy spread. A three-stage model of drive laser pulse evolution and ionization injection characterizes the beating effect and explains our experimental results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!