A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Amniotic membrane stimulates cell migration by modulating transforming growth factor-β signalling. | LitMetric

AI Article Synopsis

  • Keratinocyte migration is crucial for wound healing, and the study investigated how applying amniotic membrane (AM) influences this process by affecting the signaling pathways involved.
  • AM application was found to enhance c-Jun phosphorylation at the wound's edge, relying on MAPK and JNK signaling pathways, while also modifying the effects of TGF-ß on cell migration.
  • Inhibiting TGF-ß signaling diminished the benefits of AM on cell migration, indicating that AM's ability to reduce TGF-ß-Smad signaling is vital for promoting effective keratinocyte migration and facilitating wound closure.

Article Abstract

Keratinocyte migration is a mandatory aspect of wound healing. We have previously shown that amniotic membrane (AM) applied to chronic wounds assists healing through a process resulting in the overexpression of c-Jun at the wound's leading edge. We have also demonstrated that AM modifies the genetic programme induced by transforming growth factor-ß (TGF-ß) in chronic wounds. Here we used a scratch assay of mink lung epithelial cells (Mv1Lu) and a spontaneously immortalized human keratinocyte cell line (HaCaT) cells to examine the influence of AM application on the underlying signalling during scratch closure. AM application induced c-Jun phosphorylation at the leading edge of scratch wounds in a process dependent on MAPK and JNK signalling. Strikingly, when the TGF-ß-dependent Smad-activation inhibitor SB431542 was used together with AM, migration improvement was partially restrained, whereas the addition of TGF-ß had a synergistic effect on the AM-induced cell migration. Moreover, antagonizing TGF-ß with specific antibodies in both cell lines or knocking out TGF-ß receptors in Mv1Lu cells had similar effects on cell migration as using SB431542. Furthermore, we found that AM was able to attenuate TGF-ß-Smad signalling specifically at the migrating edge; AM treatment abated Smad2 and Smad3 nuclear localization in response to TGF-ß in a process dependent on mitogen-activated protein kinase kinase 1 (MEK1) activation but independent of EGF receptor or JNK activation. The involvement of Smad signalling on AM effects on HaCaT keratinocytes was further corroborated by overexpression of either Smad2 or Smad3 and the use of Smad phosphorylation-specific inhibitors, revealing a differential influence on AM-induced migration for each Smad. Thus, AM TGF-ß-Smad signalling abating is essential for optimal cell migration and wound closure.

Download full-text PDF

Source
http://dx.doi.org/10.1002/term.2501DOI Listing

Publication Analysis

Top Keywords

cell migration
16
amniotic membrane
8
transforming growth
8
chronic wounds
8
leading edge
8
process dependent
8
tgf-ß-smad signalling
8
smad2 smad3
8
migration
7
cell
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!