The zebrafish has become a model of choice in fundamental and applied life sciences and is widely used in various fields of biomedical research as a human disease model for cancer, metabolic and neurodegenerative diseases, and regenerative medicine. The transparency of the zebrafish embryo allows real-time visualization of the development and morphogenesis of practically all of its tissues and organs. Zebrafish are amenable to genetic manipulation, for which innovative genetic and molecular techniques are constantly being introduced. These include the study of gene function and regulation using gene knockdown, knockout and knock-in, as well as transgenesis and tissue-specific genetic perturbations. Complementing this genetic toolbox, the zebrafish exhibits measurable behavioral and hormonal responses already at the larval stages, providing a viable vertebrate animal model for high-throughput drug screening and chemical genetics. With the available tools of the genomic era and the abundance of disease-associated human genes yet to be explored, the zebrafish model is becoming the preferred choice in many studies. Its advantages and potential are being increasingly recognized within the Israeli scientific community, and its use as a model system for basic and applied science has expanded in Israel in recent years. Since the first zebrafish-focused laboratory was introduced at Tel Aviv University 16 years ago, seven more zebrafish-centric research groups have been established, along with more than two dozen academic research groups and three bio-medical companies that are now utilizing this model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1387/ijdb.160346gl | DOI Listing |
STAR Protoc
January 2025
Laboratory of Developmental Neurobiology, International Institute of Molecular Mechanisms and Machines, 02-247 Warsaw, Poland; Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland. Electronic address:
Mechanistic target of rapamycin complex 1 (mTorC1) activity plays a crucial role in brain development. Here, we present an approach for rapamycin microinjection into the habenula of larval zebrafish to achieve localized inhibition of the mTorC1 pathway and explore the role of mTorC1 in habenula function. We describe steps for performing microinjections and maintaining zebrafish larvae before and after the procedure.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
Biochim Biophys Acta Mol Basis Dis
January 2025
Alzheimer's Disease Genetics Laboratory, School of Molecular and Biomedical Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia.
Sanfilippo syndrome (mucopolysaccharidosis type III, MPSIII) causes childhood dementia, while Alzheimer's disease is the most common type of adult-onset dementia. There is no cure for either of these diseases, and therapeutic options are extremely limited. Increasing evidence suggests commonalities in the pathogenesis of these diseases.
View Article and Find Full Text PDFBioorg Chem
January 2025
Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, India, 151401. Electronic address:
The pathology of Alzheimer's disease (AD) is complex due to its multifactorial nature and single targeting drugs proved inefficient. A series of novel 4-N-substituted-2-phenylquinazoline derivatives was designed and synthesized as potential multi-target directed ligands (MTDLs) through dual inhibition of AChE and MAO-B enzymes along with Aβ aggregation inhibition for the treatment of AD. Two compounds in the series, VAV-8 and VAV-19 were found to be the most potent inhibitors of both AChE and MAO-B enzymes and moderate inhibitor of Aβ, with good thermodynamic stability at the binding pocket of the enzymes.
View Article and Find Full Text PDFEur J Med Chem
January 2025
Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China. Electronic address:
The development of potent glycogen synthase kinase-3β (GSK-3β) inhibitor has been increasingly recognized as the candidate treatment against the multifactorial pathogenic mechanism of Alzheimer's disease (AD). This study prepared various new pyrrolo[2,3-b]pyridine derivatives, evaluated the anti-AD activities and detected the security based on the structure-guided rational design. Our results indicated that many pyrrolo[2,3-b]pyridine derivatives had strong GSK-3β inhibitory activities, particularly compounds 41, 46 and 54, with the half maximal inhibitory concentrations (IC) of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!