Two new binuclear O-bridged copper(II) carboxylates with chemical formulas [Cu2(3-ClC6H4CH2COO)4(phen)2] (1) and [Cu2(3-ClC6H4CH2COO)4(bipy)2] (2) where phen = 1,10-phenanthroline and bipy = 2,2'-bipyridine have been synthesized and characterized by FT-IR, UV-Visible spectroscopy, CHN analysis and single crystal XRD. The results revealed distorted square pyramidal geometry around each copper atom of 1 and 2. The DNA interaction studies showed strong binding with Kb = 5.07 × 103 and 4.62 × 103 M-1 for 1 and 2, respectively. Both complexes showed strong enzyme inhibition, i.e., 70% and 90% for α-glucosidase with IC50 = 34.6 and 30.1 μM for 1 and 2, respectively, where acarbose was employed as control. However, both the complexes were found inactive against α-amylase. Using galantamine hydrobromide as control, 1 showed moderate inhibition activity (47%) with IC50 = 179.4 μM for acetylcholine esterase whereas 2 showed strong inhibition activity (76%) with IC50 = 95.8 μM for butyrylcholine esterase. The data reflects active anti-diabetic and anti-Alzheimer's nature of the synthesized complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.17344/acsi.2017.3250 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!