The effect of Co substitution into nanocrystalline Mg-Mn ferrite synthesized by a solution combustion technique has been studied. The cation distribution has been inferred from X-ray diffraction, the magnetization technique, and Mössbauer spectroscopy. The X-ray analysis and cation distribution data have been used to investigate the detailed structural parameters such as hopping lengths, ionic radii of tetrahedral and octahedral sites, oxygen positional parameter, site bond as well as edge lengths, bond lengths, and bond angles. The variation in the theoretically predicted bond angles suggested the strengthening of the A-B super-exchange interactions, and the same has been supported by M-H and M-T, as well as by Mössbauer studies. The ZFC-FC study revealed that anisotropy increases with the incorporation of cobalt ions. The values of magneton number, theoretical lattice parameter, and Curie temperature that have been calculated by using the cation distribution are found to match well with the experimentally obtained values.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cp01993aDOI Listing

Publication Analysis

Top Keywords

cation distribution
16
lengths bond
8
bond angles
8
cation
4
distribution key
4
key ascertain
4
ascertain magnetic
4
magnetic interactions
4
interactions cobalt
4
cobalt substituted
4

Similar Publications

Evaluation of the actinia-shaped composite coagulant for removal of algae in water: Role of charge density.

J Hazard Mater

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China. Electronic address:

A series of novel cationic modified actinia-shaped composite coagulant (AMS-C), with similar tentacle length and distribution but different charge density (CD), was successfully designed and fabricated by combination of a cationic graft starch and attapulgite (ATP). AMS-C shows a high efficiency in coagulative removal of Microcystis aeruginosa from water over a wide pH range. The algae-harvesting efficiency of optimized AMS-C can reach to 92.

View Article and Find Full Text PDF

Can Low Structural Anisotropy Produce High Optical Anisotropy? Anomalous Giant Optical Birefringent Effect in PIAlI in Focus.

J Am Chem Soc

January 2025

Functional Crystals Lab, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Tetrahedral halides with broad transparency and large second harmonic effects have the potential to serve as mid-infrared wide-bandgap materials with balanced nonlinear-optical (NLO) properties. However, their regular tetrahedral motifs tend to exhibit low optical birefringence (Δ < 0.03) due to limited structural anisotropy, which constrains their practical phase-matched capability.

View Article and Find Full Text PDF

Rare earth elements (REEs) are a critical global focus due to their increasing use, raising concerns about their environmental distribution and human exposure, both vital to food safety and human health. Surface soil (0-30 cm) and corresponding rice grain samples (n = 85) were collected from paddy fields in Taiwan. This study investigated the total REE contents in soil through aqua regia digestion, as well as their labile forms extracted using 0.

View Article and Find Full Text PDF

The Stenotrophomonas maltophilia L2 cephalosporinase is one of two beta-lactamases which afford S. maltophilia beta-lactam resistance. With the overuse of beta-lactams, selective pressures have contributed to the evolution of these proteins, generating proteins with an extended spectrum of activity.

View Article and Find Full Text PDF

Due to the escalating threat of the pathogens' capability of quick adaptation to antibiotics, finding new alternatives is crucial. Although antimicrobial peptides (AMPs) are highly potent and effective, their therapeutic use is limited' as they are prone to enzymatic degradation, are cytotoxic and have low retention. To overcome these challenges, we investigate the complexation of the cationic AMP colistin with diblock copolymers poly(ethylene oxide)--poly(methacrylic acid) (PEO--PMAA) forming colistin-complex coacervate core micelles (colistin-C3Ms).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!