Calcium (Ca) plays essential roles in generative reproduction of angiosperms, but the sites and mechanisms of Ca storage and mobilization during pollen-pistil interactions have not been fully defined. Both external and internal Ca stores are likely important during male gametophyte communication with the sporophytic and gametophytic cells within the pistil. Given that calreticulin (CRT), a Ca-buffering protein, is able to bind Ca reversibly, it can serve as a mobile store of easily releasable Ca (so called an exchangeable Ca) in eukaryotic cells. CRT has typical endoplasmic reticulum (ER) targeting and retention signals and resides primarily in the ER. However, localization of this protein outside the ER has also been revealed in both animal and plant cells, including Golgi/dictyosomes, nucleus, plasma membrane/cell surface, plasmodesmata, and even extracellular matrix. These findings indicate that CRT may function in a variety of different cell compartments and specialized structures. We have recently shown that CRT is highly expressed and accumulated in the ER of plant cells involved in pollen-pistil interactions in Petunia, and we proposed an essential role for CRT in intracellular Ca storage and mobilization during the key reproductive events. Here, we demonstrate that both CRT and exchangeable Ca are localized in the intra/extracellular peripheries of highly specialized plant cells, such as the pistil transmitting tract cells, pollen tubes, nucellus cells surrounding the embryo sac, and synergids. Based on our present results, we propose that extracellularly located CRT is also involved in Ca storage and mobilization during sexual reproduction of angiosperms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5756280PMC
http://dx.doi.org/10.1007/s00709-017-1134-8DOI Listing

Publication Analysis

Top Keywords

pollen-pistil interactions
12
storage mobilization
12
plant cells
12
intra/extracellular peripheries
8
peripheries highly
8
highly specialized
8
cells
8
cells involved
8
involved pollen-pistil
8
reproduction angiosperms
8

Similar Publications

Backcrossing between Sikitita and its male parent Arbequina, offers the possibility to check the suitability of different self-incompatibility models proposed for olive. To determine Sikitita's response to self- and cross-pollination treatments, including pollination with its father Arbequina, we compared the parameters following pollen-pistil interaction, the resulting initial and final fruit set, and the paternity of the seeds produced under different crosses. The results showed that Sikitita behaves as a self-incompatible cultivar due to the inhibition of pollen tube growth in the pistil of self-pollinated flowers.

View Article and Find Full Text PDF

Mismatch between pollen and pistil size causes asymmetric mechanical reproductive isolation across Phlox species.

Evolution

December 2024

Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, United States.

Characterizing the mechanisms of reproductive isolation between lineages is key to determining how new species are formed and maintained. In flowering plants, interactions between the reproductive organs of the flower-the pollen and the pistil-serve as the last barrier to reproduction before fertilization. As such, these pollen-pistil interactions are both complex and important for determining a suitable mate.

View Article and Find Full Text PDF

Eight hydroxyproline-O-galactosyltransferases play essential roles in female reproductive development.

Plant Sci

November 2024

LAQV Requimte, Sustainable Chemistry, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal. Electronic address:

In angiosperms, ovules give rise to seeds upon fertilization. Thus, seed formation is dependent on both successful ovule development and tightly controlled communication between female and male gametophytes. During establishment of these interactions, cell walls play a pivotal role, especially arabinogalactan-proteins (AGPs).

View Article and Find Full Text PDF

The emerging role of cysteine-rich peptides in pollen-pistil interactions.

J Exp Bot

October 2024

Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Unlike early land plants, flowering plants have evolved a pollen tube that transports a pair of non-motile sperm cells to the female gametophyte. This process, known as siphonogamy, was first observed in gymnosperms and later became prevalent in angiosperms. However, the precise molecular mechanisms underlying the male-female interactions remain enigmatic.

View Article and Find Full Text PDF

Flowering plants show significant diversity in sexual strategies, profoundly impacting the evolution of sexual traits and associated genes. Sexual selection is one of the primary evolutionary forces driving sexual trait variation, particularly evident during pollen-pistil interactions, where pollen grains compete for fertilization and females select mating partners. Multiple mating may intensify competition among pollen donors for siring, while in contrast, self-fertilization reduces sire-sire competition, relaxing the sexual selection pressure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!