The Effectiveness of Nitrate-Mediated Control of the Oil Field Sulfur Cycle Depends on the Toluene Content of the Oil.

Front Microbiol

Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, CalgaryAB, Canada.

Published: May 2017

The injection of nitrate is one of the most commonly used technologies to impact the sulfur cycle in subsurface oil fields. Nitrate injection enhances the activity of nitrate-reducing bacteria, which produce nitrite inhibiting sulfate-reducing bacteria (SRB). Subsequent reduction of nitrate to di-nitrogen (N) alleviates the inhibition of SRB by nitrite. It has been shown for the Medicine Hat Glauconitic C (MHGC) field, that alkylbenzenes especially toluene are important electron donors for the reduction of nitrate to nitrite and N. However, the rate and extent of reduction of nitrate to nitrite and of nitrite to nitrogen have not been studied for multiple oil fields. Samples of light oil (PNG, CPM, and Tundra), light/heavy oil (Gryphon and Obigbo), and of heavy oil (MHGC) were collected from locations around the world. The maximum concentration of nitrate in the aqueous phase, which could be reduced in microcosms inoculated with MHGC produced water, increased with the toluene concentration in the oil phase. PNG, Gryphon, CPM, Obigbo, MHGC, and Tundra oils had 77, 17, 5.9, 4.0, 2.6, and 0.8 mM toluene, respectively. In incubations with 49 ml of aqueous phase and 1 ml of oil these were able to reduce 22.2, 12.3, 7.9, 4.6, 4.0, and 1.4 mM of nitrate, respectively. Nitrate reduced increased to 35 ± 4 mM upon amendment of all these oils with 570 mM toluene prior to incubation. Souring control by nitrate injection requires that the nitrate is directed toward oxidation of sulfide, not toluene. Hence, the success of nitrate injections will be inversely proportional to the toluene content of the oil. Oil composition is therefore an important determinant of the success of nitrate injection to control souring in a particular field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5450463PMC
http://dx.doi.org/10.3389/fmicb.2017.00956DOI Listing

Publication Analysis

Top Keywords

nitrate
12
nitrate injection
12
reduction nitrate
12
oil
11
sulfur cycle
8
toluene content
8
content oil
8
oil fields
8
nitrate nitrite
8
aqueous phase
8

Similar Publications

Highly Accessible Electrocatalyst with Formed Copper-Cluster Active Sites for Enhanced Nitrate-to-Ammonia Conversion.

ACS Nano

January 2025

Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

Ammonia synthesis via nitrate electroreduction is more attractive and sustainable than the energy-extensive Haber-Bosch process and intrinsically sluggish nitrogen electroreduction. Herein, we have designed a single-site Cu catalyst on hierarchical nitrogen-doped carbon nanocage support (Cu/hNCNC) for nitrate electroreduction, which achieves an ultrahigh ammonia yield rate (YR) of 99.4 mol h g (2.

View Article and Find Full Text PDF

Conversion of solar energy into value-added chemicals through photoelectrochemistry (PEC) holds great potential for advancing sustainable development but limits by high onset potential which affects energy conversion efficiencies. Herein, we utilized a CuPd cocatalyst-modified Sb2(S,Se)3 photocathode (CuPd/TSSS) to achieve an ultra-low onset potential of 0.83 VRHE for photoelectrochemical ammonia synthesis.

View Article and Find Full Text PDF

Phosphorylation of Arabidopsis NRT1.1 regulates plant stomatal aperture and drought resistance in low nitrate condition.

BMC Plant Biol

January 2025

MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China.

Background: NITRATE TRANSPORTER 1.1 (NRT1.1) functions as a dual affinity nitrate transceptor regulated by phosphorylation at threonine residue 101 (T101).

View Article and Find Full Text PDF

With the development of cities, the issue of excess nitrate in wastewater has become increasingly severe. Electrochemical technology has garnered significant attention due to its straightforward operation and environmental sustainability. A CoO/GF cathode was successfully prepared by depositing CoO onto Graphite felt (GF) using an electrochemical deposition-calcination method.

View Article and Find Full Text PDF

Microbial communities, which are crucial for ecosystem function and sustainability, are under environmental pressure. Using phospholipid fatty acids (PLFAs) as a measure of microbial biomass and community structure, the responses of microorganisms to environmental drivers were studied in bank soil and sediment alongside the Yangtze River in China. Thirty-eight sites were investigated over a length of 5500 kilometers, ranging from the plateau to the estuary.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!