Scale-up manufacturing of engineered graphene-like nanomaterials to deliver the industry needs for development of high-performance polymer nanocomposites still remains a challenge. Herein, we introduce a quick and cost-effective approach to scalable production of functionalized graphite nanoplatelets using "kitchen blender" approach and Diels-Alder chemistry. We have shown that, in a solvent-free process and through a cycloaddition mechanism, maleic anhydride can be grafted onto the edge-localized electron rich active sites of graphite nanoplatelets (GNP) resulting from high collision force, called "graphite collision-induced activation". The mechanical impact was modelled by applying the point charge method using density functional theory (DFT). The functionalization of GNP with maleic anhydride (m-GNP) was characterized using various spectroscopy techniques. In the next step, we used a recyclable process to convert m-GNP to the highly-reactive GNP (f-GNP) which exhibits a strong affinity towards the epoxy polymer matrix. It was found that at a low content of f-GNP e.g., 0.5 wt%, significant enhancements of ~54% and ~65% in tensile and flexural strengths of epoxy nanocomposite can be achieved, respectively. It is believed that this new protocol for functionalization of graphene nanomaterials will pave the way for relatively simple industrial scale fabrication of high performance graphene based nanocomposites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472569 | PMC |
http://dx.doi.org/10.1038/s41598-017-03890-8 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada.
One of the key technical challenges before the widespread adoption of proton exchange membrane fuel cells (PEMFCs) is increasing the durability of the platinum catalyst layer to meet a target of 8000 operating hours with only a 10% loss of performance. Carbon corrosion, one of the primary mechanisms of degradation in fuel cells, has attracted attention from researchers interested in solving the durability problem. As such, the development of catalyst supports to avoid this issue has been a focus in recent years, with interest in hydrophobic supports such as highly graphitized carbons.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia; Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia.
Environmental issues have resulted in the forming of sustainable materials, including natural fiber-reinforced PLA composites; nonetheless, this composite has low water resistance, resulting in poor composite performance. This research aims to investigate the impact of adding a small amount of graphene nanoplatelets (GNP) on the water absorption (WA) characteristic of bamboo/kenaf-reinforced PLA hybrid composites. The physical behavior and water resistance of the composites, as well as the mechanical performance and surface after 14 days of immersion, were comprehensively investigated.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Research Institute of Mechatronics, Department of Mechanical Engineering, Changwon National University, Uichang-gu, Changwon 51140, Gyeongsangnam-do, Republic of Korea. Electronic address:
Int J Mol Sci
November 2024
Department of Chemical Engineering, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea.
Inorg Chem
November 2024
Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States.
Intercalation can be used to alter the electronic properties of graphitic materials. Intercalation is, however, a notoriously brute-force process typically carried out at a high temperature in an inert environment for an extended period. As an exception to this, a simple sonication-assisted intercalation of potassium into graphite at ambient room temperature (RT) has been reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!