Background Context: Bioresorbable calcium phosphate cement (CPC) may be suitable for vertebroplasty/kyphoplasty of osteoporotic vertebral fractures. However, additional targeted delivery of osteoinductive bone morphogenetic proteins (BMPs) in the CPC may be required to counteract the augmented local bone catabolism and support complete bone regeneration.
Purpose: This study aimed at testing an injectable, poly (l-lactide-co-glycolide) acid (PLGA) fiber-reinforced, brushite-forming cement (CPC) containing low-dose bone morphogenetic protein BMP-2 in a sheep lumbar osteopenia model.
Study Design/ Setting: This is a prospective experimental animal study.
Methods: Bone defects (diameter 5 mm) were generated in aged, osteopenic female sheep and filled with fiber-reinforced CPC alone (L4; CPC+fibers) or with CPC containing different dosages of BMP-2 (L5; CPC+fibers+BMP-2; 1, 5, 100, and 500 µg BMP-2; n=5 or 6 each). The results were compared with those of untouched controls (L1). Three and 9 months after the operation, structural and functional effects of the CPC (±BMP-2) were analyzed ex vivo by measuring (1) bone mineral density (BMD); (2) bone structure, that is, bone volume/total volume (assessed by micro-computed tomography [micro-CT] and histomorphometry), trabecular thickness, and trabecular number; (3) bone formation, that is, osteoid volume/bone volume, osteoid surface/bone surface, osteoid thickness, mineralizing surface/bone surface, mineral apposition rate, and bone formation rate/bone surface; (4) bone resorption, that is, eroded surface/bone surface; and (5) compressive strength.
Results: Compared with untouched controls (L1), CPC+fibers (L4) and/or CPC+fibers+BMP-2 (L5) significantly improved all parameters of bone formation, bone resorption, and bone structure. These effects were observed at 3 and 9 months, but were less pronounced for some parameters at 9 months. Compared with CPC without BMP-2, additional significant effects of BMP-2 were demonstrated for bone structure (bone volume/total volume, trabecular thickness, trabecular number) and formation (osteoid surface/bone surface and mineralizing surface/bone surface), as well as for the compressive strength. The BMP-2 effects on bone formation at 3 and 9 months were dose-dependent, with 5-100 µg as the optimal dosage.
Conclusions: BMP-2 significantly enhanced the bone formation induced by a PLGA fiber-reinforced CPC in sheep lumbar osteopenia. A single local dose as low as ≤100 µg BMP-2 was sufficient to augment middle to long-term bone formation. The novel CPC+BMP-2 may thus represent an alternative to the bioinert, supraphysiologically stiff polymethylmethacrylate cement presently used to treat osteoporotic vertebral fractures by vertebroplasty/kyphoplasty.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.spinee.2017.06.005 | DOI Listing |
Biomacromolecules
January 2025
Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India.
Emerging techniques of additive manufacturing, such as vat-based three-dimensional (3D) bioprinting, offer novel routes to prepare personalized scaffolds of complex geometries. However, there is a need to develop bioinks suitable for clinical translation. This study explored the potential of bacterial-sourced methacrylate levan (LeMA) as a bioink for the digital light processing (DLP) 3D bioprinting of bone tissue scaffolds.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2025
The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.
The formation of fibrocartilage in microfracture (MFX) severely limits its long-term outlook. There is consensus in the scientific community that the placement of an appropriate scaffold in the MFX defect site can promote hyaline cartilage formation and improve therapeutic benefit. Accordingly, in this work, a novel natural biomaterial-the cartilage analog (CA)-which met criteria favorable for chondrogenesis, was evaluated in vitro to determine its candidacy as a potential MFX scaffold.
View Article and Find Full Text PDFEur J Clin Invest
January 2025
Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland.
Background: The human microbiome is crucial in regulating intestinal and systemic functions. While its role in cardiovascular disease is better understood, the link between intestinal microbiota and valvular heart diseases (VHD) remains largely unexplored.
Methods: Peer-reviewed studies on human, animal or cell models analysing gut microbiota profiles published up to April 2024 were included.
Expert Opin Pharmacother
January 2025
Department of Endocrinology, 424 General Military Hospital, Thessaloniki, Greece.
Introduction: Osteoporosis is a metabolic skeletal disease characterized by low bone mass and strength, and increased risk for fragility fractures. It is a major health issue in aging populations, due to fracture associated increased disability and mortality. Antiresorptive treatments are first line choices in most of the cases.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, U.O.C. Pediatric Dentistry Unit, 00161 Rome, Italy.
: The orthodontic management of pediatric patients with rare diseases, such as Ectodermal Dysplasia (ED) and Osteogenesis Imperfecta (OI), requires complex protocols due to dental anomalies in both the number and structure of teeth. These conditions necessitate a departure from traditional orthodontic approaches, as skeletal anchoring is often required because of these anomalies. A patient with ED, characterized by hypodontia and malformed teeth, presented with insufficient natural teeth for anchorage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!