In this study, we highlight the potential of the mucoadhesive film made from a poly(ethylene oxide)/hydroxypropyl-β-cyclodextrin (PEO/CD) mixture in the oromucosal delivery of hydrophilic drugs, with a specific focus on dexamethasone phosphate disodium salt (Dexa). CD formed a complex with Dexa in solution and did not interact with mucin as highlighted from the spectrophotometric and spectrofluorimetric analysis. Similarly, CD and PEO did not affect mucin conformation, suggesting no direct interaction between the unstirred water layer and film components. Remarkably, PEO/CD/Dexa films dissolved more slowly than those made of PEO alone also in phosphate-buffered saline (PBS) pH 6.8 and gave a time-control on Dexa delivered dose. These combined effects resulted in a higher amount of Dexa accumulated in the mucosa, which can be highly beneficial in case of local diseases. Furthermore, Dexa amount able to diffuse through porcine buccal mucosa was lower when film contained CD, highlighting how CD can act as a modulator of drug transport also in the case of water-soluble drugs. In summary, our results demonstrate the versatility of PEO/CD films in mucosal delivery of hydrophilic corticosteroids paving the way to a novel approach in the treatment of mouth diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2017.06.029DOI Listing

Publication Analysis

Top Keywords

delivery hydrophilic
12
polyethylene oxide/hydroxypropyl-β-cyclodextrin
8
oromucosal delivery
8
hydrophilic drugs
8
dexa
5
oxide/hydroxypropyl-β-cyclodextrin films
4
films oromucosal
4
drugs study
4
study highlight
4
highlight potential
4

Similar Publications

: Following tooth extraction, resveratrol (RSV) can support healing by reducing inflammation and microbial risks, though its poor solubility limits its effectiveness. This study aims to develop a solid nanocomposite by embedding RSV in lipid nanoparticles (mLNP) within a hydrophilic matrix, to the scope of improving local delivery and enhancing healing. Hydroxyapatite (HXA), often used as a bone substitute, was added to prevent post-extraction alveolus volume reduction.

View Article and Find Full Text PDF

Niosome Preparation Techniques and Structure-An Illustrated Review.

Pharmaceutics

January 2025

Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia.

A comprehensive review of recent research on niosomes was conducted using a mixed methodology, including searches in databases such as Scopus, PubMed, and Web of Science (WoS). Articles were selected based on relevance. The current review examines the historical development of niosomes focusing on the methods of preparations and the contemporary strategies and prospective advancements within the realm of drug delivery systems, highlighting innovative approaches across transdermal, oral, and cellular delivery.

View Article and Find Full Text PDF

Preparation of pH-Responsive Tanshinone IIA-Loaded Calcium Alginate Nanoparticles and Their Anticancer Mechanisms.

Pharmaceutics

January 2025

State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, College of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China.

Tanshinone IIA (Tan IIA) is a lipophilic active constituent derived from the rhizomes and roots of (Danshen), a common Chinese medicinal herb. However, clinical applications of Tan IIA are limited due to its poor solubility in water. : To overcome this limitation, we developed a calcium alginate hydrogel (CA) as a hydrophilic carrier for Tan IIA, which significantly improved its solubility.

View Article and Find Full Text PDF

Recent developments in pharmacogenetics have emphasised the importance of customised medication, driving interest in technologies like FDM 3D-printing for tailored drug delivery. FDM 3D-printing is a promising technique for the on-demand manufacturing of customised oral dosage forms, providing flexibility in terms of shape and size, dose and drug release profiles. This study investigates the fabrication and characterisation of 3D-printed oral dosage forms using PEO as the primary polymer and PEG 6 K as a plasticiser.

View Article and Find Full Text PDF

Effect of polymer architecture on the properties and in vitro cytotoxicity of drug formulation: A case study with mono- and di-gradient amphiphilic poly(2-Oxazoline)s.

Eur J Pharm Biopharm

January 2025

Department of Biophysics, Faculty of Science, P. J. Safarik University in Kosice, Jesenna 5 041 54 Kosice, Slovakia; SAFTRA Photonics sro., Moldavska cesta 51 04011 Kosice, Slovakia.

Due to the straightforward single-step synthesis, amphiphilic gradient copoly(2-oxazoline)s are becoming more popular alternative to their block analogue for the development of next-generation drug delivery systems. Here, we investigated the influence of polymer architecture on the physiochemical and biological assessment of nanoformulations formed by the self-assembly of gradient copoly(2-oxazoline)s. Two different architectures were synthesized: hydrophilic-grad-hydrophobic (mono-gradient) and hydrophobic-grad-hydrophilic-grad-hydrophobic (di-gradient) which contained a hydrophilic monomer, 2-ethyl-2-oxazoline (EtOx) and a hydrophobic monomer, 2-phenyl-2-oxazoline (PhOx).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!