An optical flow-based state-space model of the vocal folds.

J Acoust Soc Am

Acoustic Technology, Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark

Published: June 2017

High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation. A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.4983628DOI Listing

Publication Analysis

Top Keywords

state-space model
8
model vocal
8
vocal folds
8
vocal fold
8
finite element
8
optical flow
8
model
7
optical flow-based
4
flow-based state-space
4
vocal
4

Similar Publications

Operating principles of interconnected feedback loops driving cell fate transitions.

NPJ Syst Biol Appl

January 2025

Department of Mathematics, University of Florida, Gainesville, 32601, FL, USA.

Interconnected feedback loops are prevalent across biological mechanisms, including cell fate transitions enabled by epigenetic mechanisms in carcinomas. However, the operating principles of these networks remain largely unexplored. Here, we identify numerous interconnected feedback loops implicated in cell lineage decisions, which we discover to be the hallmarks of lower- and higher-dimensional state space.

View Article and Find Full Text PDF

Forecasting population responses to rapidly changing marine ecosystems requires mechanistic models integrating complex demographic processes, fitted to long time series, across large spatial scales. We used a Bayesian metapopulation model fit to colony census data and climatic covariates spanning 1900-2100 for all Northeast Atlantic colonies of an exemplar seabird, the Northern gannet (Morus bassanus) to investigate metapopulation dynamics under two climate scenarios. Fecundity varied non-linearly with near-surface air temperature and recruitment was depressed by sea surface temperature.

View Article and Find Full Text PDF

Synchronized behavior among individuals, broadly defined, is a ubiquitous feature of populations. Understanding mechanisms of (de)synchronization demands meaningful, interpretable, computable quantifications of synchrony, relevant to measurements that can be made of complex, dynamic populations. Despite the importance to analyzing and modeling populations, existing notions of synchrony often lack rigorous definitions, may be specialized to a particular experimental system and/or measurement, or may have undesirable properties that limit their utility.

View Article and Find Full Text PDF

Quantitative evaluation of urban ecological carrying capacity is a critical foundation for measuring urban sustainable development in the new era. This review would enrich the concept and connotation of urban ecological carrying capacity by sorting out its components and characteristics. We categorized the methods for quantifying urban ecological carrying capacity into static evaluation methods, including ecological footprint method, comprehensive evaluation method, state space method, net primary productivity method, and carbon-oxygen balance method, as well as dynamic simulation prediction methods, including system dynamics models, BP neural network prediction models, and grey prediction models.

View Article and Find Full Text PDF

Coupling of state space modules and attention mechanisms: An input-aware multi-contrast MRI synthesis method.

Med Phys

December 2024

Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.

Background: Medical imaging plays a pivotal role in the real-time monitoring of patients during the diagnostic and therapeutic processes. However, in clinical scenarios, the acquisition of multi-modal imaging protocols is often impeded by a number of factors, including time and economic costs, the cooperation willingness of patients, imaging quality, and even safety concerns.

Purpose: We proposed a learning-based medical image synthesis method to simplify the acquisition of multi-contrast MRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!