Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Many biological populations, such as bacterial colonies, have developed through evolution a protection mechanism, called bet hedging, to increase their probability of survival under stressful environmental fluctuation. In this context, the concept of preadaptation refers to a common type of bet-hedging protection strategy in which a relatively small number of individuals in a population stochastically switch their phenotypes to a dormant metabolic state in which they increase their probability of survival against potential environmental shocks. Hence, if an environmental shock took place at some point in time, preadapted organisms would be better adapted to survive and proliferate once the shock is over. In many biological populations, the mechanisms of preadaptation and proliferation present delays whose influence in the fitness of the population are not well understood. In this paper, we propose a rigorous mathematical framework to analyze the role of delays in both preadaptation and proliferation mechanisms in the survival of biological populations, with an emphasis on bacterial colonies. Our theoretical framework allows us to analytically quantify the average growth rate of a bet-hedging bacterial colony with stochastically delayed reactions with arbitrary precision. We verify the accuracy of the proposed method by numerical simulations and conclude that the growth rate of a bet-hedging population shows a nontrivial dependency on their preadaptation and proliferation delays. Contrary to the current belief, our results show that faster reactions do not, in general, increase the overall fitness of a biological population.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.95.052404 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!