We analytically derive, in the context of the replica formalism, the first finite-size corrections to the average optimal cost in the random assignment problem for a quite generic distribution law for the costs. We show that, when moving from a power-law distribution to a Γ distribution, the leading correction changes both in sign and in its scaling properties. We also examine the behavior of the corrections when approaching a δ-function distribution. By using a numerical solution of the saddle-point equations, we provide predictions that are confirmed by numerical simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.95.052129 | DOI Listing |
J Chem Theory Comput
December 2024
Materials Science Department, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan.
The standard definition of particle number fluctuations based on point-like particles neglects the excluded volume effect. This leads to a large and systematic finite-size scaling and an unphysical surface term in the isothermal compressibility. We correct these errors by introducing a modified pair distribution function that takes account of the finite size of the particles.
View Article and Find Full Text PDFEntropy (Basel)
October 2024
Institut für Theoretische Physik, Leipzig University, IPF 231101, 04081 Leipzig, Germany.
We study the zeros of the partition function in the complex temperature plane (Fisher zeros) and in the complex external field plane (Lee-Yang zeros) of a frustrated Ising model with competing nearest-neighbor (J1>0) and next-nearest-neighbor (J2<0) interactions on the honeycomb lattice. We consider the finite-size scaling (FSS) of the leading Fisher and Lee-Yang zeros as determined from a cumulant method and compare it to a traditional scaling analysis based on the logarithmic derivative of the magnetization ∂ln⟨|M|⟩/∂β and the magnetic susceptibility χ. While for this model both FSS approaches are subject to strong corrections to scaling induced by the frustration, their behavior is rather different, in particular as the ratio R=J2/J1 is varied.
View Article and Find Full Text PDFFaraday Discuss
November 2024
Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
Key to being able to accurately model the properties of realistic materials is being able to predict their properties in the thermodynamic limit. Nevertheless, because most many-body electronic structure methods scale as a high-order polynomial, or even exponentially, with system size, directly simulating large systems in their thermodynamic limit rapidly becomes computationally intractable. As a result, researchers typically estimate the properties of large systems that approach the thermodynamic limit by extrapolating the properties of smaller, computationally-accessible systems based on relatively simple scaling expressions.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Université de Lorraine, CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR7360, 54000 Nancy, France. Electronic address:
Hypothesis: Electrostatic interactions between colloids are governed by the overlap of their electric double layers (EDLs) and the ionic screening of the structural charges distributed at their core surface and/or in their peripheral ion-permeable shell, relevant to soft particles like polymer colloids and microorganisms. Whereas ion size-mediated effects on the organization of isolated EDLs have been analysed, their contribution to the electrostatic energy of interacting soft particles has received less attention THEORY AND SIMULATIONS: Herein, we elaborate a formalism to evaluate the electrostatic interaction energy profile between spherical core/shell particles, building upon a recent Poisson-Boltzmann theory corrected for the sizes of ions and particle structural charges, for ion correlations and dielectric decrement. Interaction energy is derived from pairwise disjoining pressure and exact Surface Element Integration method, beyond the Derjaguin approximation.
View Article and Find Full Text PDFPhys Rev E
June 2024
Department of Physics, National Kapodistrian University of Athens, Athens, Greece and Archimedes/Athena RC, Athens, Greece.
Random linear vector channels have been known to increase the transmission of information in several communications systems. For Gaussian priors, the statistics of a key metric, namely, the mutual information, which is related to the free energy of the system, have been analyzed in great detail for various types of channel randomness. However, for the realistic case of non-Gaussian priors, only the average mutual information has been obtained in the asymptotic limit of large channel matrices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!