Dynamics of spiral waves rotating around an obstacle and the existence of a minimal obstacle.

Phys Rev E

Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027, China.

Published: May 2017

Pinning of vortices by obstacles plays an important role in various systems. In the heart, anatomical reentry is created when a vortex, also known as the spiral wave, is pinned to an anatomical obstacle, leading to a class of physiologically very important arrhythmias. Previous analyses of its dynamics and instability provide fine estimates in some special circumstances, such as large obstacles or weak excitabilities. Here, to expand theoretical analyses to all circumstances, we propose a general theory whose results quantitatively agree with direct numerical simulations. In particular, when obstacles are small and pinned spiral waves are destabilized, an accurate explanation of the instability in two-dimensional media is provided by the usage of a mapping rule and dimension reduction. The implications of our results are to better understand the mechanism of arrhythmia and thus improve its early prevention.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.95.052218DOI Listing

Publication Analysis

Top Keywords

spiral waves
8
dynamics spiral
4
waves rotating
4
rotating obstacle
4
obstacle existence
4
existence minimal
4
minimal obstacle
4
obstacle pinning
4
pinning vortices
4
vortices obstacles
4

Similar Publications

Photonics bound states in the continuum (BICs) are peculiar localized states in the continuum of free-space waves, unaffected by far-field radiation loss. Although plasmonic nano-antennas squeeze the optical field to nanoscale volumes, engineering the emergence of quasi-BICs with plasmonic hotspots remains challenging. Here, the origin of symmetry-protected (SP) quasi-BICs in a 2D system of silver-filled dimers, quasi-embedded in a high-index dielectric waveguide, is investigated through the strong coupling between photonic and plasmonic modes.

View Article and Find Full Text PDF

[Analysis of 41 cases of myocardial infarction in children with coronary artery lesion after Kawasaki disease].

Zhonghua Er Ke Za Zhi

February 2025

Pediatric Heart Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102 China.

To analyze the clinical characteristics,diagnosis and treatment of pediatric myocardial infarction (MI) patients with coronary artery lesions (CAL) after Kawasaki disease (KD). Clinical data including baseline characteristics, KD and CAL information, clinical symptoms at MI onset, electrocardiogram (ECG) and imaging findings, MI treatment, and clinical outcomes of 41 MI patients with CAL after KD admitted to the Children's Hospital of Fudan University from January 2017 to August 2024 were analyzed retrospectively. (1) Demographic characteristics: a total of 41 patients were included (36 males and 5 females).

View Article and Find Full Text PDF

Mesoscale heterogeneity is a critical determinant for spiral pattern formation in developing social amoeba.

Sci Rep

January 2025

Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka 2-1, Suita, 565-0871, Osaka, Japan.

Heterogeneity is a critical determinant for multicellular pattern formation. Although the importance of microscale and macroscale heterogeneity at the single-cell and whole-system levels, respectively, has been well accepted, the presence and functions of mesoscale heterogeneity, such as cell clusters with distinct properties, have been poorly recognized. We investigated the biological importance of mesoscale heterogeneity in signal-relaying abilities (excitability) in the self-organization of spiral waves of intercellular communications by studying the self-organized pattern formation in a population of Dictyostelium discoideum cells, a classical signal-relaying system model.

View Article and Find Full Text PDF

The oscillatory Belousov-Zhabotinsky (BZ) reaction is often used for the study of rotating spiral waves that are responsible for life-threatening cardiac arrhythmia. In this work, we explore the influence of a concentration gradient on the dynamics of spiral waves in the BZ-reaction system. Using ion-exchange resin beads, we introduce a gradient of hydrogen ions in a thin layer of BZ gel hosting a spiral wave.

View Article and Find Full Text PDF

The coherent spin waves, magnons, can propagate without accompanying charge transports and Joule heat dissipation. Room-temperature and long-distance spin waves propagating within nanoscale spin channels are considered promising for integrated magnonic applications, but experimentally challenging. Here we report that long-distance propagation of chiral magnonic edge states can be achieved at room temperature in manganite thin films with long, antiferromagnetically coupled spin spirals (millimetre length) and low magnetic Gilbert damping (~3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!