Objective: Fluid-phase pinocytosis is a receptor-independent mechanism of endocytosis that occurs in all mammalian cells and may be a mechanism for the uptake of LDL by macrophages. As there are currently no methods for the measurement of fluid-phase pinocytosis by individual aortic cells in vivo, we sought to identify a suitable method.
Methods: ApoE-/- mice were retro-orbitally injected with AngioSPARK fluorescent nanoparticles specifically designed to not interact with cells. After 24 h, mice were sacrificed, and the aortas were isolated and then digested to analyze aortic cell uptake of AngioSPARK by flow cytometry.
Results: CD11b-expressing aortic macrophages from mice injected with AngioSPARK showed high levels of fluid-phase pinocytosis compared to aortic cells not expressing CD11b (4,393.7 vs. 408.3 mean fluorescence intensity [MFI], respectively).
Conclusion: This new technique allows for the measurement of fluid-phase pinocytosis by aortic cells in vivo, making it possible to examine the cell-signaling molecules and drugs that affect this process. Published by S. Karger AG, Basel.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575956 | PMC |
http://dx.doi.org/10.1159/000475934 | DOI Listing |
Redox Biol
December 2024
Vascular Biology Center, Augusta University, Medical College of Georgia, Augusta, GA, 30912, USA; Department of Pharmacology and Toxicology, Augusta University, Medical College of Georgia, Augusta, GA, 30912, USA. Electronic address:
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death worldwide. Clinical and experimental data demonstrated that circulating monocytes internalize plasma lipoproteins and become lipid-laden foamy cells in hypercholesterolemic subjects. This study was designed to identify the endocytic mechanisms responsible for foamy monocyte formation, perform functional and transcriptomic analysis of foamy and non-foamy monocytes relevant to ASCVD, and characterize specific monocyte subsets isolated from the circulation of normocholesterolemic controls and hypercholesterolemic patients.
View Article and Find Full Text PDFMol Biol Cell
December 2024
Biology and Microbiology Department, South Dakota State University, Brookings, SD 57007.
Macrophages survey their environment using receptor-mediated endocytosis and pinocytosis. Receptor-mediated endocytosis allows internalization of specific ligands, whereas pinocytosis nonselectively internalizes extracellular fluids and solutes. CRISPR/Cas9 whole-genome screens were used to identify genes regulating constitutive and growth factor-stimulated dextran uptake in murine bone marrow-derived macrophages (BMDM).
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620.
In metazoan cells, growth factors stimulate solute ingestion by pinocytosis. To examine the role of pinocytosis in cell growth, this study measured cell proliferation and the attendant rates of solute flux by pinocytosis in murine macrophages in response to the growth factor colony-stimulating factor-1 (CSF1). During CSF1-dependent growth in rich medium, macrophages internalized 72 percent of their cell volume in extracellular fluid every hour.
View Article and Find Full Text PDFUnlabelled: Macrophages maintain surveillance of their environment using receptor-mediated endocytosis and pinocytosis. Receptor-mediated endocytosis allows macrophages to recognize and internalize specific ligands whereas macropinocytosis non-selectively internalizes extracellular fluids and solutes. Here, CRISPR/Cas9 whole-genome screens were used to identify genes regulating constitutive and growth factor-stimulated dextran uptake in murine bone-marrow derived macrophages (BMDM).
View Article and Find Full Text PDFGenes Cells
June 2024
Institute for Chemical Research, Kyoto University, Uji, Japan.
Macropinocytosis (MPC) is a large-scale endocytosis pathway that involves actin-dependent membrane ruffle formation and subsequent ruffle closure to generate macropinosomes for the uptake of fluid-phase cargos. MPC is categorized into two types: constitutive and stimuli-induced. Constitutive MPC in macrophages relies on extracellular Ca sensing by a calcium-sensing receptor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!