Platelet-Derived Growth Factor BB Influences Muscle Regeneration in Duchenne Muscle Dystrophy.

Am J Pathol

Neuromuscular Disorders Unit, Department of Neurology, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Network Research Center in Rare Diseases, Barcelona, Spain. Electronic address:

Published: August 2017

Duchenne muscular dystrophy (DMD) is characterized by a progressive loss of muscle fibers, and their substitution by fibrotic and adipose tissue. Many factors contribute to this process, but the molecular pathways related to regeneration and degeneration of muscle are not completely known. Platelet-derived growth factor (PDGF)-BB belongs to a family of growth factors that regulate proliferation, migration, and differentiation of mesenchymal cells. The role of PDGF-BB in muscle regeneration in humans has not been studied. We analyzed the expression of PDGF-BB in muscle biopsy samples from controls and patients with DMD. We performed in vitro experiments to understand the effects of PDGF-BB on myoblasts involved in the pathophysiology of muscular dystrophies and confirmed our results in vivo by treating the mdx murine model of DMD with repeated i.m. injections of PDGF-BB. We observed that regenerating and necrotic muscle fibers in muscle biopsy samples from DMD patients expressed PDGF-BB. In vitro, PDGF-BB attracted myoblasts and activated their proliferation. Analysis of muscles from the animals treated with PDGF-BB showed an increased population of satellite cells and an increase in the number of regenerative fibers, with a reduction in inflammatory infiltrates, compared with those in vehicle-treated mice. Based on our results, PDGF-BB may play a protective role in muscular dystrophies by enhancing muscle regeneration through activation of satellite cell proliferation and migration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajpath.2017.04.011DOI Listing

Publication Analysis

Top Keywords

muscle regeneration
12
muscle
9
pdgf-bb
9
platelet-derived growth
8
growth factor
8
muscle fibers
8
proliferation migration
8
pdgf-bb muscle
8
muscle biopsy
8
biopsy samples
8

Similar Publications

Vascular HIF2 Signaling Prevents Cardiomegaly, Alveolar Congestion, and Capillary Remodeling During Chronic Hypoxia.

Arterioscler Thromb Vasc Biol

January 2025

Metabolic and Immune Diseases Department, Biomedical Research Institute Sols-Morreale (IIBM), National Research Council (CSIC), Autonoma University of Madrid, Spain (T.A.-G., S.M.-T., R.C.-M., S.U.-B., S.M.-P.).

Background: Hypoxia is associated with the onset of cardiovascular diseases including cardiac hypertrophy and pulmonary hypertension. HIF2 (hypoxia-inducible factor 2) signaling in the endothelium mediates pulmonary arterial remodeling and subsequent elevation of the right ventricular systolic pressure during chronic hypoxia. Thus, novel therapeutic opportunities for pulmonary hypertension based on specific HIF2 inhibitors have been proposed.

View Article and Find Full Text PDF

Background: Pelvic trauma can have long-lasting debilitating effects, including severe erectile dysfunction (ED) in men. While there are effective treatments for ED, these treat the symptoms not the cause. Those who suffer from an acute traumatic injury to the neurovascular supply of penis, may benefit from regenerative therapy.

View Article and Find Full Text PDF

Skeletal muscle (SKM) has crucial roles in locomotor activity and posture within the body and also functions have been recognized as an actively secretory organ. Numerous bioactive molecules are secreted by SKM and transported by extracellular vesicles (EVs), a novel class of mediators of communication between cells and organs that contain various types of cargo molecules including lipids, proteins and nucleic acids. SKM-derived EVs (SKM-EVs) are intercellular communicators with significant roles in the crosstalk between SKM and other organs.

View Article and Find Full Text PDF

Hepatocyte growth factor (HGF) is a substance that stimulates the proliferation of hepatocytes which promote healing. We developed a macrophage membrane-encapsulated nanosphere drug delivery system containing HGF for the study of burn wound healing. Twenty-seven Sprague-Dawley rats were randomly divided into three groups: a saline control (NS) group, an engineered macrophage membrane-encapsulated nanospheres (ETMM@NPS) group, and an engineered macrophage membrane-encapsulated nanospheres treatment with HGF-loaded gene (HGF@ETMM@NPS) group.

View Article and Find Full Text PDF

Exogenous neural stem cells (NSCs) have great potential to reconstitute damage spinal neural circuitry. However, regulating the metabolic reprogramming of NSCs for reliable nerve regeneration has been challenging. This report discusses the biomimetic dextral hydrogel (DH) with right-handed nanofibers that specifically reprograms the lipid metabolism of NSCs, promoting their neural differentiation and rapid regeneration of damaged axons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!