White adipose tissue (WAT) plays a central role in whole-body energy homeostasis through storage and release of fatty acids. A deeper understanding of the complex and highly integrated pathways regulating WAT fatty acid metabolism, and how they are altered with obesity, is necessary for diagnostic and therapeutic innovations in nutritional disorders. In this multi-omics study, we investigated the influence of obesity on fatty acid metabolism in human subcutaneous adipose tissue (SAT) using an approach that integrated transcriptomic, peptidomic, and fatty acid analyses. Notably, all analyses were conducted in the same adipose tissue sample from each participant, thus minimizing the chance of spurious results. In a sample of SAT from the periumbilical abdominal region of obese (n = 11, mean body mass index [BMI] = 35.0 ± 1.2 kg/m) and lean subjects (n = 9, mean BMI = 22.1 ± 0.5 kg/m), we found that obese SAT tended to have higher relative amounts of specific monounsaturated fatty acids and n-6 polyunsaturated fatty acids, and lower amounts of saturated fatty acids (p < 0.05). These changes were associated with differential regulation of lipogenic and lipolytic pathways in obese SAT. Fatty acid analysis showed changes in estimated fatty acid desaturase and elongase activities between lean and obese SAT (p < 0.05). Biomarkers of lipogenesis (e.g., fatty acid synthase protein) were differentially regulated between lean and obese SAT. These changes were noted in conjunction with increases in extracellular matrix remodeling proteins. Transcriptomic data revealed that the key regulators of lipolysis were reduced in obese SAT. This integrative multi-omics analysis collectively shows that obese SAT has a distinct fatty acid signature compared to lean SAT and the pathways underlying fatty acid metabolism are broadly regulated at the level of gene expression and protein abundance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/omi.2017.0049 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA.
Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.
View Article and Find Full Text PDFNat Prod Res
January 2025
Laboratory of Organic Chemistry LR17-ES08 (Natural Substances Team), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia.
The phytochemical profile of various plant species reveals that some compounds possess notable antioxidant and antimicrobial properties. In this study we investigated for the first time, the antioxidant activity (FRAP, DPPH and TAC), total phenolic contents and total flavonoid contents of Delile ex Godr flowers extracts (-hexane, ethyl acetate and methanol) as well as their antimicrobial activity. The results obtained showed that the methanol extract contained the highest content of total phenolics (346.
View Article and Find Full Text PDFExp Physiol
January 2025
Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
In health, the liver is a metabolically flexible organ that plays a key role in regulating systemic lipid and glucose concentrations. There is a constant flux of fatty acids (FAs) to the liver from multiple sources, including adipose tissue, dietary, endogenously synthesized from non-lipid precursors, intrahepatic lipid droplets and recycling of triglyceride-rich remnants. Within the liver, FAs are used for triglyceride synthesis, which can be oxidized, stored or secreted in very low-density lipoproteins into the systemic circulation.
View Article and Find Full Text PDFPharmaceutics
December 2024
Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan.
: Laurocapram (Azone) attracted attention 40 years ago as a compound with the highest skin-penetration-enhancing effect at that time; however, its development was shelved due to strong skin irritation. We had already prepared and tested an ante-enhancer (IL-Azone), an ionic liquid (IL) with a similar structure to Azone, consisting of ε-caprolactam and myristic acid, as an enhancer candidate that maintains the high skin-penetration-enhancing effect of Azone with low skin irritation. In the present study, fatty acids with different carbon numbers (caprylic acid: C8, capric acid: C10, lauric acid: C12, myristic acid: C14, and oleic acid: C18:1) were selected and used with ε-caprolactam to prepare various IL-Azones in the search for a more effective IL-Azone.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA.
Defatting dehulled hemp seeds is a crucial step prior to protein extraction. However, conventional methods rely on flammable solvents, posing significant health, safety, and environmental concerns. Additionally, hemp protein has poor extractability, challenging functionality, and flavor limitations, restricting its broader application in foods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!