Microbial enzymes catalytically drive biogeochemical processes in environments. The dynamic linkage between functional enzymes and biogeochemical species transformation has, however, rarely been investigated for decades because of the challenges to directly quantify enzymes in environmental samples. The diversity of microorganisms, the low amount of available biomass and the complexity of chemical composition in environmental samples represent the main challenges. To address the diversity challenge, we first identify several signature peptides that are conserved in the targeted enzymes with the same functionality across many phylogenetically diverse microorganisms using metagenome-based protein sequence data. Quantification of the signature peptides then allows estimation of the targeted enzyme abundance. To achieve analyses of the requisite sensitivity for complex environmental samples with low available biomass, we adapted a recently developed ultrasensitive targeted quantification technology, termed high-pressure high-resolution separations with intelligent selection and multiplexing (PRISM) by improving peptide separation efficiency and method detection sensitivity. Nitrate reduction dynamics catalyzed by dissimilatory and assimilatory enzymes in a hyporheic zone sediment was used as an example to demonstrate the application of the enzyme quantification approach. Together with the measurements of biogeochemical species, the approach enables investigating the dynamic linkage between functional enzymes and biogeochemical processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1758-2229.12558 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!