Background & Aims: Neuropilin-1 (NRP-1) activates signalling pathways as multifunctional co-receptors in cancer cells. However, its role and how it is regulated by miRNAs in cholangiocarcinoma (CCA) have not yet been investigated.
Methods: The expression of NRP-1, miR-320 and key molecules involved in cell proliferation, migration and related signalling pathways were detected by immunohistochemistry, immunoblotting and qRT-PCR. Stable transfectants depleted of NRP-1 were generated. The regulatory effect of miR-320 on NRP-1 was evaluated by luciferase reporter assays. Cell proliferation, cell cycle distribution and migration were examined. Xenograft tumour models were established to assess tumourigenesis, tumour growth and lung metastasis.
Results: Cholangiocarcinoma tissues expressed higher levels of NRP-1 than adjacent normal biliary tissues, and its expression negatively correlated with miR-320. NRP-1 depletion inhibited cell proliferation and induced cell cycle arrest in the G1/S phase by upregulating p27, and downregulating cyclin E and cyclin-dependent kinase 2; and reduced cell migration by inhibiting the phosphorylation of focal adhesion kinase. NRP-1 depletion suppressed tumourigenesis, tumour growth and lung metastasis by inhibiting cell proliferation and tumour angiogenesis in experimental animals. Depletion of NRP-1 inhibited the activation of VEGF/VEGFR2, EGF/EGFR and HGF/c-Met pathways stimulated by respective ligands. MiR-320 negatively regulated the expression of NRP-1 by binding to the 3'-UTR of NRP-1 promoter, and miR-320 mimics inhibited cell proliferation and migration, and the growth of established tumours in animals by downregulating NRP-1.
Conclusions: The present results indicate that NRP-1 is negatively regulated by miR-320, and both of them may be potentially therapeutic targets for CCA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/liv.13495 | DOI Listing |
Int J Radiat Biol
January 2025
Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei City, Taiwan.
Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.
View Article and Find Full Text PDFJ Neurochem
January 2025
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Severe trauma frequently leads to nerve damage. Peripheral nerves possess a degree of regenerative ability, and actively promoting their recovery can help restore the sensory and functional capacities of tissues. The neuropeptide calcitonin gene-related peptide (CGRP) is believed to regulate the repair of injured peripheral nerves, with neuronal transient receptor potential vanilloid type 1 (TRPV1) potentially serving as a crucial upstream factor.
View Article and Find Full Text PDFJ Med Chem
January 2025
State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.
MTDH-SND1 protein-protein interaction (PPI) plays an important role in the initiation and development of tumors, and it is a target for the treatment of breast cancer. In this study, we identified and synthesized a series of novel small-molecule inhibitors of MTDH-SND1 PPI. The representative compound showed potent activity against MTDH-SND1 PPI with an IC of 487 ± 99 nM and tight binding to the SND1-purified protein with a value of 279 ± 17 nM.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Opthalmology, Chongqing Hechuan District People's Hospital, Chongqing, China.
Background: Bushen-Huoxue-Mingmu-Formula (MMF) has achieved definite clinical efficacy. However, its mechanism is still unclear.
Objective: Investigating the molecular mechanism of MMF to protect retinal ganglion cells (RGCs).
Cerebral ischemia-reperfusion injury (CIRI) constitutes a significant etiology of exacerbated cerebral tissue damage subsequent to intravenous thrombolysis and endovascular mechanical thrombectomy in patients diagnosed with acute ischemic stroke. The treatment of CIRI has been extensively investigated through a multitude of clinical studies. Acupuncture has been demonstrated to be effective in treating CIRI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!