A pyridinium-amphiphile-loaded poly(lactic-co-glycolic acid) (PLGA) nanocarrier (C1-PNC) was developed as an adjuvant in order to break the resistance and restore the susceptibility of methicillin-resistant Staphylococcus aureus (MRSA) cells to therapeutic antibiotics. Notably, against a clinical MRSA strain, C1-PNC was found to render 8- and 6-fold decreases in the minimum biofilm eradication concentration (MBEC ) of gentamicin and ciprofloxacin, respectively. Mechanistic studies on MRSA planktonic cells revealed that in the case of gentamicin, C1-PNC promotes enhanced cellular uptake of the antibiotic, whereas the propensity of C1-PNC to inhibit efflux pump activity could be leveraged to enhance cellular accumulation of ciprofloxacin, leading to effective killing of MRSA cells. Interestingly, the combinatorial dosing regimen of C1-PNC and the antibiotics was nontoxic to cultured HEK293 cells. This nontoxic amphiphile-loaded nanomaterial holds considerable promise as an adjuvant for antibiotic-mediated alleviation of MRSA biofilms.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.201700260DOI Listing

Publication Analysis

Top Keywords

methicillin-resistant staphylococcus
8
staphylococcus aureus
8
mrsa cells
8
c1-pnc
5
mrsa
5
amphiphilic cargo-loaded
4
cargo-loaded nanocarrier
4
nanocarrier enhances
4
enhances antibiotic
4
antibiotic uptake
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!